English version below! <<<
Carə tuttə,
Vi annuncio il prossimo seminario MAP:
⟶ Speaker: Francesca Pistolato (University of Luxembourg)
⟶ Data: Giovedì 21 Dicembre, ore 11:30
⟶ Dove: Aula Seminari (Pisa) e Online su Gmeet: Francesca Pistolato (seminarimap.wixsite.com)https://seminarimap.wixsite.com/seminarimap/articoli/francesca-pistolato
⟶ Titolo: On p-domain functionals of Gaussian random fields
⟶ Abstract: The topic of the talk is the asymptotic behavior of integral functionals of Gaussian random fields, defined on non-uniformly growing domains, i.e. t1D1 × … × tpDp, where Di are compact sets in Rdi and ti >0, for any i = 1, ..., p. Assuming the separability of the covariance structure of the underlying Gaussian field, it is possible to prove limit theorems as every ti grows, only knowing the behavior for a chosen index j. Collaterally, we partially answer a conjecture by Réveillac, Stauch and Tudor in 2012 and improve their estimate on the rate of convergence of the q-th variation of the fractional Wiener sheet to a Gaussian distribution.
Ricordiamo che questi seminari sono aperti a tuttə: la prima metà del seminario introduce i concetti e gli strumenti necessari per la seconda metà, dedicata agli argomenti di ricerca.
Per altre informazioni, visitate il nostro sito: https://seminarimap.wixsite.com/seminarimap
A presto,
Gli organizzatori: Daniele Barbera Jeremy Mirmina Mario Rastrelli Leonardo Roveri Luciano Sciaraffia
- o - o - o - o - o - o - o - o - o - o - o - o - o - o - o -
English Version <<<
Dear all,
Here is the announcement of the next MAP seminar:
⟶ Speaker: Francesca Pistolato (University of Luxembourg)
⟶ Date: Thursday 21st December, 11:30
⟶ Where: Aula Seminari (Pisa) e Online su Gmeet: Francesca Pistolato (seminarimap.wixsite.com)https://seminarimap.wixsite.com/seminarimap/articoli/francesca-pistolato
⟶ Title: On p-domain functionals of Gaussian random fields
⟶ Abstract: The topic of the talk is the asymptotic behavior of integral functionals of Gaussian random fields, defined on non-uniformly growing domains, i.e. t1D1 × … × tpDp, where Di are compact sets in Rdi and ti >0, for any i = 1, ..., p. Assuming the separability of the covariance structure of the underlying Gaussian field, it is possible to prove limit theorems as every ti grows, only knowing the behavior for a chosen index j. Collaterally, we partially answer a conjecture by Réveillac, Stauch and Tudor in 2012 and improve their estimate on the rate of convergence of the q-th variation of the fractional Wiener sheet to a Gaussian distribution.
We remind you that these seminars are addressed to everybody: the first half of the seminar is dedicated to the introduction of notions and tools needed in the second half, which is focused on research topics.
For more information, check our website: https://seminarimap.wixsite.com/seminarimap
See you soon,
The organizers: Daniele Barbera Jeremy Mirmina Mario Rastrelli Leonardo Roveri Luciano Sciaraffia
_______________________________________________ Utenti mailing list -- utenti@lists.dm.unipi.it To unsubscribe send an email to utenti-leave@lists.dm.unipi.it
collaboratori@lists.dm.unipi.it