Carə tuttə,
Giovedì 2 Novembre alle 14.30 in Aula Seminari si terrà il seminario di Francesco Costantino (Université Toulouse III) dal titolo "Costruzione di TQFT di dimensione 3 e 4". Di seguito l'abstract.
Comincerò questo seminario ricordando la definizione delle TQFT in dimensione n e alcuni fatti generali (e.g. la definizione degli invarianti « quantistici » associati).
Utilizzando poi una presentazione di Juhasz della categoria dei cobordismi darò un’idea della costruzione recente di nuove famiglie di TQFT in dimensione 2+1 e 3+1, basata su categorie di un tipo molto generale e che in dimensione 3 include per esempio le costruzioni di Turaev-Viro o più in generale di Barrett e Westbury, ma nel caso di categorie non semi-semplici.
Terminerò parlando della costruzione in dimensione 4 e degli invarianti associati indicando alcune delle ostruzioni attualmente note per ottenere invarianti che siano capaci di distinguere varietà omeomorfe ma non diffeomorfe.
(In collaborazione con : N. Geer, B. Patureau, B. Haioun e A. Virelizier)
Ci troveremo alle 13 in atrio per andare a pranzo con Francesco.
Le informazioni sui prossimi seminari si trovano sul sito<https://www.dm.unipi.it/categoria-evento/geometry-seminar/>.
Vi aspettiamo!
Buona giornata,
Filippo, Giovanni e Giuseppe
Cari tutti,
Trasmetto per conoscenza
Cordialmente,
Carlo
> Dear applied topologists,
> We are pleased to announce the forthcoming mini-workshop TDA in Turin
<https://sites.google.com/view/tdainturin/home-page>, which will be held in
>Turin on November 29th.
> For more details, please visit our webpage or contact one of the
organisers.
> Kind regards,
> the organisers
Dear colleague,
I would like to advertise a 2 years postdoc position in Geometry and
Topology in Pisa, Italy, starting from the beginning of 2024. The position
is supported by the PRIN Project "Geometry and topology of manifolds".
You can find all the relevant information here:
https://bandi.unipi.it/public/Bandi/Detail/44ed0733-57e0-4063-8c8f-1d1b7530…
The deadline is November 20 at 1 pm (local time). Please forward this
announcement to any potential candidate. If you have any questions, do
not hesitate to contact me.
Best regards,
Bruno Martelli
Carə tuttə,
Giovedì 19 Ottobre alle 14.30 in Aula Seminari si terrà il seminario di Vera Vértesi (Universität Wien) dal titolo "The Giroux correspondence via convex surfaces". Di seguito l'abstract.
The “hard direction” of the Giroux correspondence states that any two open books representing the same contact structure are related by a sequence of positive stabilisations and destabilisations. We give a proof of this statement for tight contact structures using convex surface theory. This is a joint work with Joan Licata.
Mercoledì 18 Ottobre alle 16.30 in Aula Seminari terrò un pretalk su strutture di contatto e libri aperti, indirizzato particolarmente a studenti magistrali interessati al seminario.
Le informazioni sui prossimi seminari si trovano sul sito<https://www.dm.unipi.it/categoria-evento/geometry-seminar/>.
Vi aspettiamo!
Buona giornata,
Filippo, Giovanni e Giuseppe
Title: A raising operator formula for Macdonald polynomials,
Speaker(s): George H. Seelinger, University of Michigan,
Date and time: 12 Oct 2023, 14:30 (Europe/Rome),
Lecture series: Seminar on Combinatorics, Lie Theory, and Topology,
Venue: Department of Mathematics (Aula Riunioni).
You can access the full event here: https://events.dm.unipi.it/e/211
Abstract
--------
Macdonald polynomials are a basis of symmetric functions with coefficients in $\mathbb{Q}(q,t)$ exhibiting deep connections to representation theory and algebraic geometry. In particular, specific specializations of the $q,t$ parameters recover various widely studied bases of symmetric functions, such as Hall-Littlewood polynomials, Jack polynomials, q-Whittaker functions, and Schur functions. Central to this study is the fact that the Schur function basis expansion of the Macdonald polynomials have coefficients which are polynomials in $q,t$ with nonnegative integer coefficients, which can be realized via a representation-theoretic model. A more combinatorial approach to this result lies in first expanding Macdonald polynomials into LLT polynomials via the work of Haglund-Haiman-Loehr. LLT polynomials were first introduced by Lascoux-Leclerc-Thibbon as a q-deformation of a product of Schur polynomials and have subsequently appeared in the study of Macdonald polynomials and related families. In this talk, I will explain this background and provide a new explicit "raising operator" formula for Macdonald polynomials that follows from a realization of LLT polynomials in the elliptic Hall algebra of Burban and Schiffmann, which we describe via an isomorphism between the shuffle algebra studied by Feigin and Tsymbaliuk and part of the elliptic Hall algebra. This work is joint with Jonah Blasiak, Mark Haiman, Jennifer Morse, and Anna Pun.
--
Indico :: Email Notifier
https://events.dm.unipi.it/e/211