(segnalo agli interessati)
---------- Forwarded message ---------- Da: "Dynamical Systems" dynsys@sns.it Oggetto: [dynlist]--1 mar: Raissy Data: 23 febbraio 2012 08:19:24 GMT+01:00 A: dynlist@sns.it
The archive of this list may be retrieved from the web: https://mail.sns.it/Lists/dynlist/List.html
Approfitto di questo messaggio per ricordarvi del seminario di Henk Bruin, oggi alle 16.
Il seminario seguente sara' invece:
######################################## ---> GIOVEDI' 1 MARZO 2012 alle 16:00 <---
Sala Conferenze (Puteano, Centro De Giorgi)
** Jasmin Raissy (Milano Bicocca) **
** Dynamics of multi-resonant biholomorphisms **
Absrtract: in coda a questo messaggio
http://tinyurl.com/6oba4t8 #########################################
Prima di Pasqua avremo poi un altro seminario mercoledi' 21 marzo (Arnaldo Nogueira)
Saluti, Carlo Carminati
#################### Abstract del seminario di Jasmin: Normal forms are a very important tool in several branches of mathematics. I shall discuss the normalization and the linearization problems for germs of biholomorphism of several complex variables with an isolated fixed point, starting from the classical Poincare'-Dulac procedure, and then focusing on the case of multi-resonant biholomorphisms, i.e., such that the resonances among the eigenvalues of the differential are generated over N by a finite number of linearly independent multi-indices. I shall give sharp conditions for the existence of basins of attraction where a Fatou coordinate can be defined. Furthermore, we shall obtain a generalization of the Leau-Fatou flower theorem, providing a complete description of the dynamics in a full neighborhood of the fixed point for 1-resonant parabolically attracting holomorphic germs in Poincare'-Dulac normal form. (Joint work with Filippo Bracci and Dmitri Zaitsev).