Buondì,
Riprenderemo domani mattina con i seminari settimanali di geometria, con un orario nuovo: giovedì alle 11.00. Seguono i dati sul seminario di domani. Mi scuso per lo scarso preavviso,
A presto, Bruno
Giovedì 17 marzo, ore 11.00 Aula seminari Speaker: Roberto Frigerio Titolo: Discrete approximations of Gromov's simplicial volume.
Abstract: The simplicial volume is a homotopy invariant of closed manifolds defined by Gromov in 1982. For a manifold M, it is bounded from above by the minimal number of top-dimensional simplices in a triangulation of M, and roughly speaking it measures the minimal size of triangulations of M "with real coefficients". A long-standing conjecture by Gromov asserts that, for aspherical manifolds, the vanishing of the simplicial volume implies the vanishing of the Euler characteristis. In this talk I describe an approach to this conjecture that makes use of discrete approximations of the simplicial volume in towers of coverings.
Mi dispiace molto ma domani dalle 11:30 sono in una commissione alla SNS. Saluti, Carlo
On Wed, 16 Mar 2016, Bruno Martelli wrote:
Buondì,
Riprenderemo domani mattina con i seminari settimanali di geometria, con un orario nuovo: giovedì alle 11.00. Seguono i dati sul seminario di domani. Mi scuso per lo scarso preavviso,
A presto, Bruno
Giovedì 17 marzo, ore 11.00 Aula seminari Speaker: Roberto Frigerio Titolo: Discrete approximations of Gromov's simplicial volume.
Abstract: The simplicial volume is a homotopy invariant of closed manifolds defined by Gromov in 1982. For a manifold M, it is bounded from above by the minimal number of top-dimensional simplices in a triangulation of M, and roughly speaking it measures the minimal size of triangulations of M "with real coefficients". A long-standing conjecture by Gromov asserts that, for aspherical manifolds, the vanishing of the simplicial volume implies the vanishing of the Euler characteristis. In this talk I describe an approach to this conjecture that makes use of discrete approximations of the simplicial volume in towers of coverings.
geometria_pisa@lists.dm.unipi.it