Titolo: The vector partition function: algebraic, topological
and combinatorial aspects.
Luca Moci (Institut de Mathematiques de Jussieu - Paris 7)
Abstract:
(joint work with Francesco Cavazzani)
In how many ways can a positive integer be expressed as a
repeated sum of elements of a fixed list of positive integers?
Generalizing this question, the vector partition function
counts in how may ways a vector with integer coordinates can
be written as a linear combination with nonnegative integer
coefficients of the elements of a list of vectors with integer
coordinates.
This function is "piecewise quasi-polynomial", and its local
pieces generate a module over the Laurent polynomials. We
describe this and several related modules and algebras.
Then we show that these modules and algebras can
be"geometrically realized" as the equivariant K-theory of some
manifolds that have a nice combinatorial description.
We also propose a more natural and general notion of duality
between these modules, which corresponds to a Poincaré
duality-type correspondence for equivariant K-theory.
Il seminario è diviso in due parti. Una prima parte di 45
minuti, introduttiva, in italiano, per permettere la
partecipazione anche a non esperti o studenti degli ultimi
anni e una seconda parte, sempre di 45 minuti, più avanzata.
------------------------------------------------
I prossimi seminari in programma:
GIOVEDI' 23 MAGGIO 2013
16:00-18:00, Sala Riunioni (Dip. Matematica)
W algebre
Alberto De Sole (Sapienza Università di Roma)
16:00-18:00, Sala Riunioni (Dip. Matematica)