- martedì
19 novembre alle ore 17 in Aula Riunioni, per il ciclo dei
Seminari di Analisi, avremo il piacere di ascoltare Andrea Giorgini (Politecnico di Milano), che terrà un
seminario dal titolo "New results for the Cahn-Hilliard equation with non-degenerate mobility". Trovate qui sotto l'abstract.
- segnaliamo, da
parte degli organizzatori Giulia Bevilacqua, Matteo Carducci, Bozhidar Velichkov,
il workshop "Calculus
of Variations and Free Boundary Problems IX", che si terrà i giorni
mercoledì 20
e giovedì 21 novembre in
Aula Magna.
A
presto,
Ilaria Lucardesi e Luigi Forcella
-----
Dear all,
we
remind you of the seminar of tomorrow,
Thursday November 14th,
by Bohdan Bulanyi (Università di Bologna), at 5PM in Aula Magna.
For the next week, we announce two events:
- on
Tuesday November 19th at 5PM in
Aula Riunioni, for the Mathematical Analysis Seminar, we will have the pleasure of listening to Andrea
Giorgini (Politecnico di Milano). The title of the
talk is "New results for the Cahn-Hilliard equation with non-degenerate
mobility". Please find the abstract below.
- from the organisers Giulia Bevilacqua, Matteo Carducci, Bozhidar Velichkov, we
forward the announcement of the
workshop "Calculus of Variations and Free Boundary Problems IX", which will take place on
Wednesday 20th
and Thursday 21st, in
Aula Magna.
See you soon,
Ilaria Lucardesi and Luigi Forcella
-----
Speaker: Andrea Giorgini (Politecnico di Milano)
Title: New results for the Cahn-Hilliard equation with non-degenerate mobility
Abstract: The Cahn-Hilliard equation is a well-known macroscopic model for phase
separation phenomena, with significant applications across engineering and biology. While considerable progress has been made over the past few decades in understanding the well-posedness and long-term behavior of the solutions to the Cahn-Hilliard equation
in the constant-mobility case, the analysis in the case of concentration-dependent mobility remains relatively unexplored. In this talk, I will present some recent results on the Cahn-Hilliard equation with non-degenerate mobility and logarithmic potential
in two dimensions. These results improve the state of the art dating back to the work by Barrett and Blowey in 1999. This is a joint work with Monica Conti (Politecnico di Milano), Stefania Gatti and Pietro Galimberti (Università di Modena e Reggio Emilia).