Care tutte, cari tutti,
per il prossimo evento del ciclo dei Seminari di Analisi, mercoledì 7 febbraio alle ore 17:00, in Aula Riunioni, avremo il piacere di ascoltare Alex Kaltenbach (TU, Berlin), che terrà un seminario dal titolo “Pseudo-monotone operator theory for electro-rheological fluids”. Trovate qui sotto l’abstract.
Il seminario sarà preceduto da una merenda dalle ore 16:30 nella stessa aula.
Vi ricordiamo inoltre il seminario di domani 2 febbraio alle 17:00 in Sala Seminari di Tohru Ozawa (Waseda, Tokyo).
A presto, Ilaria Lucardesi e Luigi Forcella
---------------------------------------------
Dear all, On Wednesday 7th February at 5:00 PM, in "Aula Riunioni", for the Mathematical Analysis Seminar, we will have the pleasure of listening to Alex Kaltenbach (TU, Berlin). The title of the talk is “Pseudo-monotone operator theory for electro-rheological fluids”. Please find below the abstract.
The seminar will be preceded by a snack in the same room, starting at 4:30 PM.
We also remind you the seminar by Tohru Ozawa (Waseda, Tokyo), tomorrow at 5:00 PM in "Aula Seminari".
See you soon, Ilaria Lucardesi and Luigi Forcella
--------------------------------------------- Speaker: A. Kaltenbach. Title: Pseudo-monotone operator theory for electro-rheological fluids. Abstract: We consider a model describing the unsteady motion of an incompressible, electro-rheological fluid. Due to the time-space-dependence of the power-law index, the analytical treatment of this system is involved. Standard results like a Poincare or a Korn inequality are not available. Introducing natural energy spaces, we establish the validity of a formula of integration-by-parts which allows to extend the classical theory of pseudo-monotone operators to the framework of variable Bochner-Lebesgue spaces. This leads to generalised notions of pseudo-monotonicity and coercivity, the so-called Bochner pseudo-monotonicity and Bochner coercivity. With the aid of these notions and the established formula of integration-by-parts it is possible to prove an abstract existence result which immediately implies the weak solvability of the model describing the unsteady motion of an incompressible, electro-rheological fluid.