Buongiorno,
vi segnalo il seguente mini-corso di Fisica Matematica che sara' tenuto da Alain Albouy (IMCCE, Paris) e consistera' di 4 lezioni di 2 ore ciascuna. Le prime 2 lezioni saranno martedi' 13 Dicembre ore 15-17 mercoledi' 14 Dicembre ore 10-12 in aula seminari, Dip. di Matematica.
Segue un breve abstract del corso. Cordialmente,
Giovanni Gronchi
--------------------------------------------------------------------- Title: Integrability in classical mechanics
Abstract: a phenomenological observation of conservative systems in classical mechanics is that they form two very distinct classes, the integrable ones and the non-integrable ones. But different authors however disagree about many examples. A basic example is the repulsive 3-body problem, considered by some as integrable, by others as non-integrable.
I will present Bruns and Poincare' classical non-integrability arguments for the 3-body problem, and more recent results. I will discuss several attempts of definition of integrability, and see what they give on the very basic examples of integrable systems in classical mechanics: central force, two-fixed centers, rigid body, etc. ---------------------------------------------------------------------
Giovanni Federico Gronchi University of Pisa - Dep. of Mathematics Largo B. Pontecorvo, 5 56127 Pisa (Italy) PHONE : +39-050-2213252 FAX: +39-050-2213224 email: gronchi@dm.unipi.it web page: http://adams.dm.unipi.it/~gronchi
Buongiorno, le ultime due lezioni del mini corso di Fisica Matematica tenuto da Alain Albouy si svolgeranno
martedi' 17 Gennaio ore 10-12 mercoledi' 18 Gennaio ore 10-12
in aula magna al Dipartimento di Matematica. Di seguito trovate informazioni sul corso.
Cordiali saluti,
Giovanni Gronchi
------------------------------------------------------------- mini corso: 'Integrability in classical mechanics' 4 lezioni (8h) lecturer: Alain Albouy (IMCCE, Paris)
Abstract: a phenomenological observation of conservative systems in classical mechanics is that they form two very distinct classes, the integrable ones and the non-integrable ones. But different authors however disagree about many examples. A basic example is the repulsive 3-body problem, considered by some as integrable, by others as non-integrable.
I will present Bruns and Poincare' classical non-integrability arguments for the 3-body problem, and more recent results. I will discuss several attempts of definition of integrability, and see what they give on the very basic examples of integrable systems in classical mechanics: central force, two-fixed centers, rigid body, etc. -------------------------------------------------------------------------