Il ciclo di seminari di Analisi Armonica,
proseguirà
Martedì 28 marzo alle ore
sul seguente argomento:
“Differentiable L^p-functional calculus for certain sums of
non-commuting operators”
Michael
Gnewuch
Università di Kiel
Abstract
Let T be a selfadjoint operator on the square integrable
functions on some measure space X. According to the spectral theorem a bounded
Borel function f induces a bounded operator f(T) on L^2(X). An interesting
question is now, under which additional assumptions on f the operator extends to
a bounded operator on L^p(X) for p\neq 2. The talk will deal with this question
in the case where T belongs to a class of sums of non-commuting operators. Our
result extends some nice result of Sami Mustapha about sub-Laplacians on a class
of solvable Lie-groups with exponential volume growth. But our proof uses
functional calculus and special functions instead of probabilistic methods. The
setting we discuss first is free of Lie groups, but the particular examples we
would like to give are certain differential operators on Lie groups with
exponential volume growths.
Il programma dei seminari proseguirà a cadenza
settimanale, in aula Tonelli, il giovedì alle ore 11.00.
Tutti gli interessati sono
invitati a partecipare.
Segreteria della
Classe di Scienze