David Masser (University of Basle)

Rational values of the Riemann zeta function

It is classical that the values

$$
\zeta(0) = -\frac{1}{2}, \ \zeta(-1) = -\frac{1}{12}, \ \zeta(-2) = 0, \ \zeta(-3) = \frac{1}{120}, \ \zeta(-4) = 0, \dots, \ \zeta(-11) = \frac{691}{32760}, \dots
$$

at non-positive integers are all rational. By contrast the values

$$
\zeta(2) = \frac{\pi^2}{6}, \ \zeta(4) = \frac{\pi^4}{90}, \dots, \ \zeta(12) = \frac{691\pi^{12}}{638512875}, \dots
$$

are all irrational thanks to the transcendence of π . Apéry proved in 1978 that $\zeta(3)$ is irrational, but we still do not know that $\zeta(5)$ is irrational. However Ball and Rivoal proved in 2001 that the number of irrationals among $\zeta(3), \zeta(5), \zeta(7), \ldots, \zeta(2n+1)$ is at least $c \log n$ for some $c > 0$ independent of *n*.

Even less is known about $\zeta(x)$ at rational x, say with $2 < x < 3$. We sketch a proof that the number of these x in $\frac{1}{n}\mathbf{Z}$ such that $\zeta(x)$ is also in $\frac{1}{n}\mathbf{Z}$ is at most $C(\log n)^2$ for some C also independent of n .