Buonasera,

Inoltro il seguente annuncio di seminario.

Saluti,

Fabio



-------- Messaggio Inoltrato --------
Oggetto: seminario Pearson: 6 giugno alle 14:30
Data: Wed, 29 May 2024 12:12:19 +0200
Mittente: Mariarosa Mazza <mariarosa.mazza@uniroma2.it>
A: mariarosa.mazza@uniroma2.it


Car* tutt*,

giovedi 6 giugno alle 14.30 in aula Dal Passo, Dipartimento di Matematica, Roma Tor Vergata, il Prof. John Pearson (University of Edinburgh) terrà un seminario dal titolo:

"Recent Developments in the Numerical Solution of PDE-Constrained Optimization Problems".

Il seminario può essere seguito online usando il link:

https://teams.microsoft.com/l/meetup-join/19%3ad48916dee7364e0bbb08216ea621de47%40thread.tacv2/1716976241393?context=%7b%22Tid%22%3a%2224c5be2a-d764-40c5-9975-82d08ae47d0e%22%2c%22Oid%22%3a%22c2aef70f-5baf-4851-af7c-b0e3d343779b%22%7d

Vi prego di diffondere l'annuncio fra i possibili interessati.

Grazie,

Mariarosa

-----------------------------------------------

ABSTRACT: Optimization problems subject to PDE constraints form a mathematical tool that can be applied to a wide range of scientific processes, including fluid flow control, medical imaging, option pricing, biological and chemical processes, and electromagnetic inverse problems, to name a few. These problems involve minimizing some function arising from a particular physical objective, while at the same time obeying a system of PDEs which describe the process. It is necessary to obtain accurate solutions to such problems within a reasonable CPU time, in particular for time-dependent problems, for which the “all-at-once” solution can lead to extremely large linear systems.

In this talk we consider iterative methods, in particular Krylov subspace methods, to solve such systems, accelerated by fast and robust preconditioning strategies. In particular, we will survey several new developments, including block preconditioners for fluid flow control problems, a circulant preconditioning framework for solving certain optimization problems constrained by fractional differential equations, and multiple saddle-point preconditioners for block tridiagonal linear systems. We will illustrate the benefit of using these new approaches through a range of numerical experiments.

This talk is based on work with Santolo Leveque (Scuola Normale Superiore, Pisa), Spyros Pougkakiotis (Yale University), Jacek Gondzio (University of Edinburgh), and Andreas Potschka (TU Clausthal).

This talk is part of the activity of the MUR Excellence Department Project MatMod@TOV (CUP E83C23000330006).

-- 
-------------------------------------
Dr. Mariarosa Mazza
University of Rome Tor Vergata
Via della Ricerca Scientifica, 1 00133, Rome, Italy
Email:mariarosa.mazza@uniroma2.it
Tel: 0039 06-7259-4636
Url:https://sites.google.com/site/mariarosamazza1/
---------------------------------