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Raffaele Dario Marcovecchio, born on 8th December 1974 at Foggia
(Italy), italian citizen.

1 Current position

July 1, 2012 - June 30, 2013: INdAM research grant “Ing. Giorgio Schirillo”
at the
B Dipartimento di Matematica Largo B.Pontecorvo, 5 56127 Pisa Italy

2 Qualifications

Master’s degree in Mathematics at the University of Pisa, under the direction
of Prof. C. Viola, obtained on 25.11.1999.

PhD in Mathematics at the University of Pisa. Thesis under the su-
pervision of Prof. C.Viola, defended on 15.11.2004 before the Committee
as follows: Prof. F.Amoroso, Prof. R.Dvornicich, Prof. A.Perelli, Prof.
H.P.Schlickewei, Prof. C.Viola.

3 Former scientific and educational activities

October 1, 2006 - August 31, 2007 PostDoc, with teaching duties at the “
Laboratoire de Mathématiques Nicolas Oresme”at the University of Caen,
France. Official name of the position:

ATER: Attaché Temporaire d’Enseignement et de Recherche.

September 1, 2007 - 31 August 2008, ATER at the “Institut Fourier” of the
University of Grenoble I, France.

September 1, 2008 - 31 August 2011 PostDoc at the Faculty of Math-
ematics at the University of Vienna, Austria in the Combinatorics Group
headed by Prof. C. Krattenthaler.

4 Computer skills

Windows XP, Unix, Mac OS X, Latex, Maple, Mathematica, Pari/GP.

5 Languages

Italian: mother tongue. French: discreet. English: good. German: basic.
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6 Publications

[1] PhD thesis“Alcuni Problemi di Approssimazione Diofantea”, Pisa, Italy.

[2] Raffaele Marcovecchio, Determinanti polinomiali-esponenziali, Boll. U-
nione Mat. Ital. (8) 7-B (2004), 713–730.

[3] Raffaele Marcovecchio, Linear independence of linear forms in polyloga-
rithms, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 5 (2006), 1–11.

[4] Raffaele Marcovecchio, The Rhin-Viola method for log 2, Acta Arith. 139
(2009), 147–184.

[5] Raffaele Marcovecchio and Carlo Viola, Irrationality and non-quadraticity
measures for logarithms of algebraic numbers, to appear in Journal of Aus-
tralian Mathematical Society.

[6] Raffaele Marcovecchio, Symmetry in Legendre-type polynomials and Dio-
phantine approximation of logarithms, MFO no.22/2012.

7 Teaching experiences

Academic year 2006/2007, University of Caen:
First semester:
Algebra, 36 hours of exercises for the fourth year of Master’s degree in

Fundamental Mathematics and Mathematics for Computer science.
Further Mathematics, 8 hour of lectures and 20 hours of exercises for the

first year of Bachelor’s degree in Applied Mathematics and Social Sciences.
Second semester:
Statistics, 28 hours of exercises for the first year of Bachelor’s degree in

Biology.

A.y. 2007/2008, University of Grenoble:
First semester:
Linear Algebra and Analysis, 52 hours of exercises for the first year of

Bachelor’s degree in Geology.
Second semester:
Introduction to dynamical systems and modeling, 39 hours of exercises

for the first year of Bachelor’s degree in Biology.
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8 Seminars delivered at international conferences

8/9/2006: Linear independence of linear forms in polylogarithms, CIRM,
Luminy (France).

20/6/2008: La méthode de Rhin-Viola pour log 2, conference in honor
of Georges Rhin: Méthodes algorithmiques en théorie des nombres, Paul
Verlaine University, Metz, France.

10/3/2010: Rational approximations to the logarithm and its square,
Italy-India Conference on Diophantine and Analytic Number Theory, CRM
Ennio DeGiorgi, Pisa, Italy.

24/4/2012: Symmetry in Legendre-type polynomials and Diophantine
approximation of logarithms, MFO Conference Diophantische Approxima-
tionen, Oberwolfach, Germany, organized by Y.Bugeaud and Yu.Nesterenko.

31/07/2012: The irrationality measure of ζ(2) revisited, International
Conference “Diophantine Analysis”, Russia, organized by R.Akhunzhanov,
N.Moshchevitin and Yu.Nesterenko.

1/10/2012: On the irrationality measures of values of special functions,
ERC Research Period on Diophantine Geometry, CMR Ennio De Giorgi,
SNS, Pisa, Italy. Scientific Committee: E.Bombieri, D.Masser, L.Szpiro,
G.Wüstholz, S.-W. Zhang. Organizing Committee: P.Corvaja, R.Dvornicich,
U.Zannier.

9 Recent seminars

11/6/2008: Approximations simultanées de log 2 et log2 2, Grenoble, France.
24/6/2008: Intégrales doubles complexes et log 2, Lyon, France.
8/7/2008: Il metodo di Rhin-Viola per log 2, Pisa, Italy.
23/1/2009: Nouvelles mesures d’irrationalité et de non-quadraticité de

log 2, Caen, France.
2/2/2012: Approssimazioni mediante razionali ed irrazionali quadratici

di logaritmi di numeri razionali, Parma, Italy.

10 Participation in conferences

Selecta:
28 June to 6 July 2000, Diophantine Approximation, CIME Foundation,

Cetraro, Italy. Organized by F.Amoroso and U.Zannier.
11 to 18 July 2002, Analytic Number Theory, Cetraro, CIME Founda-

tion. Organized by A.Perelli and C.Viola.
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13 to 15 November 2003, Second Italian Conference on Number Theory,
Parma, Italy. Organized by A.Perelli, C.Viola, A.Zaccagnini and U.Zannier.

1 April to 31 July 2005, Diophantine Geometry, Mathematical Research
Center Ennio De Giorgi, Scuola Normale Superiore, Pisa, Italy. Organized
by Y. Bilu, E. Bombieri, D. Masser, L. Szpiro and U. Zannier.

June 22, 2007, La journée de Mathan, Bordeaux I University, Talence,
France. Organized by J.Fresnel.

10 to 15 September 2007, Arithmetic Geometry, Cetraro, CIME Foun-
dation. Organized by P.Corvaja and C.Gasbarri.

8 to 12 October 2007, Développements récents en Approximation Dio-
phantienne, CIRM, Luminy, France. Organized by B.Adamcewski, N.Ra-
tazzi and T. Rivoal.

6 to 10 July 2009, XXVIèmes Journées Arithmétiques, SaintEtienne,
France. Scientific Committee: S.Akiyama, F.Amoroso, K.Buzzard, B.Conrad,
K.Consani, P.Liardet, R.Pink, P.Tretkoff (née Cohen), J.Urbanowicz, G.
Van der Geer. Organizing Committee: D.Essouabri, F.Foucault, G.Grekos,
F.Hennecart, F.Pellarin, O.Robert.

4 to 8 October 2010, Number theory and its applications. An interna-
tional conference dedicated to Kàlmàn Gyory, Attila Petho, Jànos Pintz,
Andràs Sàrközy, Debrecen, Hungary. Organized by A.Bèrczes, A.Fazekas,
K.Gyarmati, L.Hajdu and À.Pintèr.

12 to 17 september 2011, XIX Congresso dell’Unione Matematica Ital-
iana, Bologna, Italy. Scientific Committee: F.Brezzi, L.Ambrosio, B.Franchi,
M.Pulvirenti and A.Verra.

18 to 21 september 2011, 67th Séminaire Lotharingien de Combinatoire,
joint session with XVII Incontro Italiano di Combinatoria Algebrica, Berti-
noro, Italy. Organized by M. Barnabei, F. Bonetti, C. Krattenthaler and V.
Strehl.

11 Research

Keywords: Diophantine approximation and equations, Padé and Padé-type
approximations, (poly)logarithms, irrationality/non-quadraticity measures
(over a number field), Riemann zeta function, hypergeometric functions.
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11.1 Polynomial-exponential determinants

Let K be a field of characteristic 0. A polynomial-exponential equation is
an equation of the form

n∑
l=1

Pl(x)αl(x) = 0, x = (x1, . . . , xs) ∈ Zs (1)

where αl = (αl1, . . . , αls) ∈ (K×)s, αx
l = αx1

l1 · · ·α
xs
ls and P1, . . . , Pn are

polynomials in s variables with coefficients in K.
The equation (1) is said to be purely exponential if all polinomials Pl are

constants.
Let k ≥ m ≥ 1 be integers, and let r1, . . . , rm be positive integers such

that
r1 + · · ·+ rm = k. (2)

Let α1, . . . , αm ∈ K×. Let G(x) = G(α1, . . . , αm; r1, . . . , rm;x1, . . . , xk) be
the function of integer variables x = (x1, . . . , xk) defined by

G(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

αx1
1 · · · xr1−11 αx1

1 · · · αx1
m · · · xrm−11 αx1

m

αx2
1 · · · xr1−12 αx2

1 · · · αx2
m · · · xrm−12 αx2

m

...
...

...
...

αxk
1 · · · xr1−1k αxk

1 · · · αxk
m · · · xrm−1k αxk

m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (3)

The determinant G(x) is a generalization of Méray’s determinant [Me] (see
also [Am]).

The function G satisfies

G(x1, . . . , xk) = (αr1
1 · · ·α

rm
m )x1G(0, x2 − x1, . . . , xk − x1). (4)

Thus in the study of the equation

G(x) = 0, (5)

we may assume x1 = 0.
From now on we assume that α1, . . . , αm ∈ K× satisfy the following

condition:
αh/αi is not a root of unity for all h 6= i. (6)
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A subdeterminant ∆ of G(α1, . . . , αm; r1, . . . , rm;x1, . . . , xk) is said to be
well placed if it is also of type (3), i.e. if there exist positive integers m′,
i1, . . . , im′ , r′1, . . . , r

′
m′ , k′, j1, . . . , jk′ , with 1 ≤ m′ ≤ m, 1 ≤ i1 < · · · < im′ ≤

m, 1 ≤ r′h ≤ rih for each h = 1, . . . ,m′, k′ = r′1 + · · · + r′m′ , 1 ≤ j1 < · · · <
jk′ ≤ k, such that

∆ = G(αi1 , . . . , αim′ ; r
′
1, . . . , r

′
m′ ;xj1 , . . . , xjk′ ).

We say that a solution (x1, . . . , xk) ∈ Zk of (5) is in general position if no
well-placed subdeterminant ∆ of G(x) vanishes.

If m = k, and hence r1 = · · · = rm = 1, the equation (5) becomes purely
exponential. In this case, we put

F (x) = G(α1, . . . , αm; 1, . . . , 1;x1, . . . , xm).

We have

Theorem 11.1. (Schlickewei and Viola [Sc-Vi3]) Let α1, . . . , αk ∈ K× sat-
isfy (6). Then the equation

F (0, y2, . . . , yk) = 0 (7)

has at most exp((6k!)3k!) solutions (y2, . . . , yk) ∈ Zk−1 in general position.

It is natural to ask whether and how we can extend theorem 11.1 to the
equation G(0, y2, . . . , yk) = 0, if 1 < m < k. The following theorem answers
this question in the case where K is a number field and k = 4:

Theorem 11.2. (Marcovecchio [Ma1]) Let K be a number field of degree d,
and let α1, . . . , αm ∈ K×, with 2 ≤ m ≤ 3, satisfy (6). Then the equation

G(0, y2, y3, y4) = 0

has at most
22

25
d38400

solutions in general position.

The proof of this theorem uses arguments occurring in the proof of The-
orem 11.1, combined with a combinatorial analysis of certain special cases.
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11.2 Q(α)–linear independence of 1,Li1(α),Li2(α)

The polylogarithm Lis(z) is defined, for z ∈ C, |z| < 1 and any positive
integer s, by the following series:

Lis(z) :=
+∞∑
k=1

zk

ks
. (8)

In an unpublished part of my doctoral thesis I proved the linear indepen-
dence over Q(α) of 1, Li1(α), Li2(α) for a suitable class of algebraic numbers
α.

For this purpose I used Padé approximants of type II of the functions
1,Li1(z),Li2(z), which have been introduced by Hata [H1]. My generaliza-
tion of Hata’s results is similar to the extension given in [Am-Vi] of the
method introduced in [V].

The following examples illustrate the results obtained:

1,Li1(α),Li2(α) are Q(α)–linearly independent

if:

1. α = p/q is rational.

p = 1, q ≤ −8 or q ≥ 12 (Hata [H1])

p = 2, q ≤ −65 or q ≥ 79

p = 3, q ≤ −218 or q ≥ 250

p = 4, q ≤ −517 or q ≥ 573,

more generally, p > 0 and |q| > q̃(p), where one asimptotically has

q̃(p) ∼ 4e4

27
p3,

for p→ +∞. Here and in the rest of this section p and q are integers.

2. α is quadratic imaginary, α = i
√

1/q, with q ≥ 108, and therefore in
particular α = i/s, with |s| ≥ 11. More generally α = i

√
p/q, with p > 0

and q ≥ q̃(p) > 0, with the asymptotic behaviour

q̃(p) ∼
(

4e4

27

)2

p3,

for p→ +∞.
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3. α is quadratic real. α = 577− 408
√

2, 362− 209
√

3, 682− 305
√

5.

4. α is cubic complex. We can choose α equal to one of the two complex
conjugate roots of x3 + qx2 + 1, with q ≥ 5381, or of x3 + qx2 − 1, with
q ≤ −4845.

More generally, α may be chosen among the roots of x3 + qx2 + p, with
pq > 0, and |q| > q̃(p), where

q̃(p) ∼
(

4e6

27

)2

|p|3.

for p→ +∞.

5. α cubic real, α equals the real root of x3 + qx + 1, close to −1/q, with
q ≥ 69008, or q ≤ −60744.

6. The degree D ≥ 3 of α is arbitrary. We may choose α equal to one of
the two roots of xD + qx2 + 1 close to ±i/√q, with q > q̃(D), where

q̃(D) ∼
(

4e2D

27

)2

for D → +∞.
We can also choose α equal to the real root of xD + qx+1 close to −1/q,

with |q| > q̃(D), where

q̃(D) ∼ 4e4D

27

for D → +∞.

11.3 Linear independence of linear forms in polylogarithms

We prove in [Ma2] that for any non-zero algebraic number α such that
|α| < 1, the vector space over Q(α) spanned by 1,Li1(α),Li2(α), . . . has
infinite dimension, where Lis(z) is the function defined in (8).

In the special case where α is rational, this result is due to Rivoal [Ri].
In [Ma2] we avoid the saddle point method in several variables using the
determinant method, introduced by Siegel and used in this context by Nik-
ishin [N]. Our generalization uses a result due to Fischler and Rivoal [Fi-Ri].
Furthermore, it is analogous to the extension due to Amoroso and Vi-
ola [Am-Vi] of the method of Viola [V].
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More specifically, we use the hypergeometric function

Nn(a, q, r; z) =
n!a−r(rn)!a+1

((r + 1)n)!a−q((r + 1)n+ 1)!q
z−rn−1×

×
∑
s≥0

(rn+ 1)a+1
s

((r + 1)n+ 1)a−qs ((r + 1)n+ 2)qs

z−s

s!
,

where 0 ≤ q ≤ a, z ∈ C, |z| > 1 n ∈ N and 0 < r < a is a real parameter.
One has the decomposition

Nn(a, q, r; z) =

a∑
h=1

A(h)
n (a, q, r; z)Lih(1/z)−A(0)

n (a, q, r; z), (9)

where A
(h)
n (a, q, r; z) is a polynomial in z with rational coefficients. Our

main result is represented by the formula

det(A(h)
n (a, q, r; z))h=0,...,a

q=0,...,a
= ±

(
(rn)!

n!r

)a+1

(z − 1)an−rn−1.

This proves that the linear forms (9), for q = 0, 1, . . . , a, are linearly inde-
pendent for any z 6= 1.

11.4 The Rhin-Viola method for log 2

In [Ma3] we use the method of Rhin and Viola [Rh-Vi1], [Rh-Vi2], [Rh-Vi3]
to improve the non-quadraticity measures of logarithms of rational numbers
proved by Hata [H2]. E.g. we prove that

µ2(log 2) < 15.6515.

By the same method we improve the irrationality measure of log 2 due to
Rukhadze [Ru], obtained in 1987.

In fact, we prove that for any rational number p/q with sufficiently large
q we have ∣∣∣∣log 2− p

q

∣∣∣∣ > q−3.57455391,

i.e.
µ(log 2) < 3.57455391.

The previous record in [Ru] was

µ(log 2) < 3.89139978.
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Our improvement uses a family of double complex integrals of certain ratio-
nal functions, namely

I(h, j, k, l,m, q;x) := xmax{0,q−l,m−h}(1− x)k+l+m+1

×
i∞∫

s=0

−i∞∫
t=0

shtj dt ds

(1− s)l+k−j+1(s− t)h+j−k+1(t− x)k+m−h+1
, (10)

where h, j, k, l,m, q are positive integers such that h+ j+ q = k+ l+m and
that l + k − j, h + j − k, k + m − h are also positive, x is a real parameter
satisfying 0 < x < 1. The shape of this function is suggested by the con-
struction introduced by Sorokin [So] of simultaneous Padé approximants to
1, log x, . . . , logk x at the point x = 1.

A tool used in the proof is the“discrete Laplace method”, in the form
developed by Ball and Rivoal [Ba-Ri], which allows us to obtain the asymp-
totic behavior of the coefficient of log 2 in the imaginary part of the integral
(10), where one sets x = 1/2. A weak version of the saddle point method
in C2 due to Hata yields the asymptotic upper bound of the integral. The
permutation group method due to Rhin and Viola is used to find good de-
nominators for the coefficients of 1 and log 2 in the imaginary part of the
integral, and of 1, log 2 and log2 2 in its real part.

11.5 Logarithms of algebraic numbers

This is a joint work with C.Viola. In a paper [Ma-Vi] to appear in Journal of
Australian Mathematical Society we study Diophantine properties of loga-
rithms of certain algebraic numbers. We introduce, for a complex parameter
x not 0 or 1, two double integrals instead of a single one. If x ∈ R+, these
are the integral (10) and its complex conjugate. Then we choose x to be
an algebraic number α, or one of its algebraic conjugates, both in the two
integrals mentioned above and in the associated double contour integral. We
thus obtain, by an application of the C2–saddle point method, the required
asymptotic behaviours of our approximations to logα and its square. Then
we apply an improved version of an irrationality criterion due to [Am-Vi],
and a generalization of that criterion to the dimension 2.
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