Non sono stati cambiati gli orari, solo i docenti (ci siamo invertiti). 

Le aule e gli orari sono i soliti

Lunedì B.2.1
























PROBABILITÀ E STATISTICA PER L'INFORMATICA
lezione
(dal 21/02/2022 al 30/05/2022)




































































Martedì









































































































Mercoledì B.4.2




































PROBABILITÀ E STATISTICA PER L'INFORMATICA
lezione
(dal 23/02/2022 al 01/06/2022)




























































Giovedì B.2.4












PROBABILITÀ E STATISTICA PER L'INFORMATICA
esercitazione
(dal 24/02/2022 al 26/05/2022)
































Dipartimento di Matematica
Politecnico di Milano

Da: Random <random-bounces@fields.dm.unipi.it> per conto di Francesco Grotto <francesco.grotto@sns.it>
Inviato: lunedì 2 maggio 2022 10:44
A: random@mail.dm.unipi.it <random@mail.dm.unipi.it>
Oggetto: [Random] Seminar in Pisa: Jules Pitcho
 
Dear Colleagues,
we would like to invite you to the following seminar by Jules Pitcho (UZH) to be held this Wednesday (May 4th) at Dipartimento di Matematica in Pisa and online via Google Meets.

The organizers,
A. Agazzi and F. Grotto

--------------------------------------------

Location: Sala Seminari, Dipartimento di Matematica, Pisa
Google Meet Link: https://meet.google.com/gji-phwo-vbg

Time: May 4th, 2022, 14:00-15:00 CET
Speaker: Jules Pitcho (UZH - Universität Zürich)
Title: Since the work of Di Perna-Lions and Ambrosio, it is known that the continuity equation with divergence-free Sobolev vector field is well-posed for densities with suitable integrability. At the Lagrangian level, these works translate into a selection principle for integral curves under which uniqueness for almost every initial data is true. Nevertheless, uniqueness of integral curves can fail almost everywhere. The deterministic technique used to construct such divergence-free Sobolev vector fields and non-unique integral curves go by the name of convex integration: we will explain some of the ideas underlying this technique. We will conclude by arguing that for rougher vector fields, a genuinely stochastic behaviour of integral curves is to be expected: we should not hope for an almost everywhere selection principle for integral curves.