SEMINARS IN STATISTICS @ COLLEGIO CARLO ALBERTO https://www.google.com/url?q=https://www.carloalberto.org/events/category/seminars/seminars-in-statistics/page/2/?tribe-bar-date%3D2019-09-01&source=gmail-imap&ust=1732719071000000&usg=AOvVaw1_VfRy4qDP_HHioNc49JU_
Venerdì 07/11/2025, presso il Collegio Carlo Alberto, in Piazza Arbarello 8, Torino, si terrà il seguente seminario:
------------------------------------------------
12.00-13.00
Speaker: Fadoua BALABDAOUI (ETH ZURICH)
Title: Unmatched linear regression: Asymptotic results under identifiability
Abstract: Consider the regression problem where the response $Y\in \mathbb R$ and the covariate $X\in \mathbb R^d $ for $d\geq 1$ are unmatched. Under this scenario we do not have access to pairs of observations from the distribution of $(X, Y)$, but instead we have separate data sets ${Y_i}_{i=1}^n$ and ${X_j}_{j=1}^m$, possibly collected from different sources. We study this problem assuming that the regression function is linear and the noise distribution is known or can be estimated. We introduce an estimator of the regression vector based on deconvolution (the DLSE) and demonstrate its consistency and asymptotic normality under an identifiability assumption. Under non-identifiability of the regression vector but identifiability of the distribution of the predictor, we construct an estimator of the latter based on the DLSE and show that it converges to the true distribution of the predictor at the parametric rate in the Wasserstein distance of order 1. We illustrate the theory with several simulation results. ------------------------------------------------
Sarà possibile seguire il seminario anche in streaming: chiunque volesse collegarsi è pregato di inviare una email entro *mercoledì 05/11/2025* a matteo.giordano@unito.it mailto:matteo.giordano@unito.it
Il webinar è organizzato dalla "de Castro" Statistics Initiative (www.carloalberto.org/stats http://www.carloalberto.org/stats) in collaborazione con il Collegio Carlo Alberto.
Cordiali saluti,
Matteo Giordano Assistant Professor (RTDA) Department of Economics, Social Studies, Applied Mathematics and Statistics (ESOMAS) www.matteogiordano.weebly.com https://matteogiordano.weebly.com/