Roma May and June 2023

Amine Asselah *

We propose a graduate course of about 16 hours on transient random walks, simple or branching, runing over a period of four weeks.

Simple Random Walk is the first example of a Markovian process, whereas Branching Random Walk has a time indexed by a random tree, and looses the SRW's sequential way of visiting space.

The highlights of the course would be two phenomena in high dimensions linked with folding.

- The chances that two independent walks meet for a long time.
- The chances that two independent branching walks both visit a large region, and this is to be discovered during the course.

We plan to have self-contained lectures (with little pre-requisites), and will start with reviewing useful facts (classical and not) on on random walks. Here is a more detailed plan of the courses.

- 1. Week I: Random Walk on \mathbb{Z}^d with $d \geq 3$.
 - Time spent in a a domain.
 - Green function.
 - The many forms of Capacity.
 - Covering a domain.
- 2. Week II: To meet or not to meet
 - Lawler's magic formula.
 - Non-intersection probabilities and Capacity.
 - Intersection of two walks for $d \ge 5$ in infinite-time horizon.
- 3. Week III: Branching Random Walks
 - The critical branching random walks.
 - The infinite invariant tree.
 - Green's function and Branching Capacity.
 - The critical dimension four.
 - Time spent in a ball.
- 4. Week IV : Branching Random Walks.
 - An approximate last passage decomposition.
 - Tail of Local Times.
 - Time spent in an arbitrary domain if $d \ge 5$.
 - Intersection of two branching random walks.

^{*}Université Paris-Est Créteil; amine.asselah@u-pec.fr