Si avvisa che in data 01-06-2016, alle ore 14:30 precise, presso l'Aula Seminari "F. Saleri" VI piano - Dipartimento di Matematica, Politecnico di Milano, nell'ambito delle iniziative MOX, si svolgerà il seguente seminario Relatore: Adam Kashlak, Cambridge University Titolo: Inference on covariance operators via concentration inequalities Abstract: Inference on covariance operators is an important part of functional data analysis. Panaretos, Kraus, and Maddocks (2010) compare covariance operators for Gaussian process data. Pigoli, Aston, Dryden, and Secchi (2014) consider a variety of metrics over the space of covariance operators. In this talk, we propose a novel approach to the analysis of covariance operators making use of concentration inequalities. First, non-asymptotic confidence sets are constructed for such operators. Then, subsequent applications including a k sample test for equality of covariance, a functional data classifier, and an expectation-maximization style clustering algorithm are derived and tested on both simulated and phoneme data. Tutti gli interessati sono invitati a partecipare. Cordiali saluti, Laura Sangalli -- Laura Maria Sangalli MOX - Dipartimento di Matematica Politecnico di Milano Piazza Leonardo da Vinci 32 20133 Milano - Italy tel: +39 02 2399 4554 fax: +39 02 2399 4568 email: laura.sangalli@polimi.it url: http://mox.polimi.it/~sangalli