Buongiorno,

Il seminario di Stephan Eckstein di domani (titolo e abstract in basso)

si potrà seguire anche su zoom:

 

Argomento: Seminario Padova - Stephan Eckstein

Ora: 5 apr 2024 02:30 PM Roma

 

Entra Zoom Riunione

https://unipd.zoom.us/j/86749461733

 

ID riunione: 867 4946 1733

 

Da: Alekos Cecchin via Random <random@lists.dm.unipi.it>
Inviato: martedì 2 aprile 2024 21:38
A: random@mail.dm.unipi.it
Oggetto: [Random] Seminario Padova - Stephan Eckstein

 

Buongiorno a tutti,

 

Vorremmo segnalarvi che venerdì prossimo (5 Aprile) alle ore 14:30 in aula 2AB40 (Torre Archimede, Università di Padova) ci sarà un seminario per il ciclo di seminari in Probabilità e Finanza di:

 

Stephan Eckstein (Tübingen University)
https://sites.google.com/view/stephan-eckstein/


Title: Exponential convergence of Sinkhorn's algorithm and Hilbert's projective metric for unbounded functions


Date: April 5, 2024, at 14:30, 2AB40


Abstract: Entropic regularization of optimal transport has found numerous applications in various fields recently. A major reason of this surge in applications is the popularization of Sinkhorn's algorithm to efficiently solve the entropic optimal transport problem numerically. The topic of this talk is the (rate of) convergence of Sinkhorn's algorithm. In bounded settings, it is known that Sinkhorn's algorithm converges with exponential rate, which is a consequence of applying a commonly used version of Hilbert's metric corresponding to the cone of all non-negative functions. This talk shows how to define versions of Hilbert's metric so that we can show exponential convergence of Sinkhorn's algorithm even in unbounded settings. This is done through the use of cones which are a relaxations of the cone of all non-negative functions, in the sense that they include all functions having non-negative integral values when multiplied with certain test functions. Along the way, we establish that kernel integral operators are contractions with respect to suitable versions of Hilbert’s metric, even if the kernel functions are not bounded away from zero.

 

Vi aspettiamo numerosi!

 

Alberto Chiarini e Alekos Cecchin

 

Sito web del seminario: https://www.math.unipd.it/~chiarini/seminars/