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1. Lévy processes

• Definition

• From infinitely divisible distributions to Lévy processes

• Lévy-Khintchine representation

• Lévy decomposition

• Fine structure of the Jump process

2. Classes of Lévy processes used in Finance

• Jump Diffusion processes

• Subordinated Brownian motions

• An example: fitting distributions and the CGMY process

3. Option pricing

• Itô’s Lemma and the replicating portfolio - market incompleteness part I

• Girsanov Theorem and Risk Neutral Valuation - market incompleteness part
II

• Pricing vanilla options and ‘semi-closed analytical formulae’

• PIDE

• Applications: when does it matter? Tail events - credit risk modelling and
VaR of derivatives positions

• Shortcomings of Lévy processes and moving forward: Time Changed Lévy
processes

4. Simulation and other computation issues

• Monte Carlo simulation: plain vanilla strategy

• Some variance reduction via stratification: bridge strategy

• Fourier transforms
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• An example: COS method

5. Linear transformation and correlated Lévy processes

• Lévy processes in Rd

• Linear transformation

• Margin processes

• The case of the sum of independent Lévy processes

• Correlated Lévy processes via subordination

• Correlated Lévy processes via linear transformation

• Applications: parameter estimation, calibration, implied correlation
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