it is my pleasure to bring to your attention the following two seminars
in Quantitative Finance, organised by LTI@UniTO. The seminars can be
attended online via Zoom at the links accessible via the buttons below.
--
Luca Regis
Associate Professor
Department of Economics and Statistics (ESOMAS)
University of Torino
sites.google.com/view/lucaregis
http://sites.google.com/view/lucaregis
Office: +39 011 670 6065
www.carloalberto.org/lti
http://www.carloalberto.org/lti
<#>
https://4z5y5.r.a.d.sendibm1.com/mk/cl/f/dxQszhXdTYSeK8TgXWVwPdgch-yVozm308uWxeg02CAeRgCXbxXMzGg0Afvlvvj-dMKNlzkSEuKcRdARWz4xB8ORasq7ZEsLK7H8it5uSxv1YQA41LEkDrUoFgv043G6EgQaODBV54pSvEw6G-VhdHv4-izZnrqz9U8DPjGJxvmBftACZhIuFnX9KhROIHfsZxBAmln1HQ
<#>
LTI@UniTO and Fondazione Collegio Carlo Alberto are pleased to invite
you to the following seminars:
<#>
*May 24, 2022 | 12:00-13:15*
*Predicting Corporate Bond Returns: Merton Meets Machine Learning*
*Amit Goyal (University of Lausanne)*
<#>
*Abstract.* We investigate the return predictability of corporate bonds
using big data and machine learning. We find that machine learning
models substantially improve the out-of-sample performance of stock and
bond characteristics in predicting future bond returns. We also find a
significant improvement in the performance of machine learning models
when imposing a theoretically motivated economic structure from the
Merton model, compared to the reduced-form approach without
restrictions. Overall, our work highlights the importance of explicitly
imposing the dependence between expected bond and stock returns via
machine learning and Merton model when investigating expected bond returns.
<#>
*To attend in person, register here*
https://4z5y5.r.a.d.sendibm1.com/mk/cl/f/hfP4I4mUbx241x0z60A6739Y-00wYiECykBv8JEkIfoxDOPstOzun3OdgA9xxckWeA4IDkIikAeIuK1NrbDMOG-n2IKVWZFfFuzppykcNLz3DyBF81r6aD2JooS8N7kCAnxdJuOPTnxMw8bDd4cqvQWm_fURgLGfRlG2JNbOS7kVivIyXIdmg0qqpU8rBfOuAkoh5aWjXDU87BjHQw
<#>
*To attend online, join Zoom Meeting*
https://4z5y5.r.a.d.sendibm1.com/mk/cl/f/H7wKsG1vuV3OD31wQ_0E5gOGft1OURjriGpy4l2HBnbGy5-RIpKtNE24in74xl9qdi71_G-lNdxn3MOWKy1jqexRCget7fl3q0pEXzGTbyAj8S6Z9TzvrPDfzKAx82f67Ki7496qWeYia5GiENxXAlY90ZmgY3xJN7LTZHHy-JpEuaeW5a9IqrVgMIO-Ltcxx1Rvm6rU0087cWu9rtjDAZZCBEGY1r5AEYwVv7sF-2g8rREQF1S4zYdYXhSzm5tvTP90nrFrpiKkYQ
<#>
<#>
*May 25, 2022 | 12:00 - 13:15*
*JAQ of All Trades: Job Mismatch, Firm Productivity and Managerial Quality*
*Marco Pagano (University of Naples Federico II)*
<#>
*Abstract.* Does the matching between workers and jobs help explain
productivity differentials across firms? To address this question we
develop a job-worker allocation quality measure JAQ by combining
employer-employee administrative data with machine learning techniques.
The proposed measure is positively and significantly associated with
labor earnings over workers’ careers. At firm level, it features a
robust positive correlation with firm productivity, and with managerial
turnover leading to an improvement in the quality and experience of
management. JAQ can be constructed for any employer-employee data
including workers’ occupations, and used to explore the effect of
corporate restructuring on workers’ allocation and careers.
<#>
*To attend in person, register here*
https://4z5y5.r.a.d.sendibm1.com/mk/cl/f/ykATFHYX2laIzxQ_xgRrxeAEz3ksTLnNgK53pCdxL7LUg6LRR-g_XnvkXX3DzRr8VvfauqJQP-xf0q0Yiafv3_c3MFrohM-bHRhHTlbCH72Bqt8h5ji5DtJxhaw7VPQUmSLRzwlKySzKj3acAA0bBh_ckzdM6ByZ_zJ3taHUIkFLQEIkwUZsTXsUHFYZGrxwbPV8RRpQ4bX5m2a24g
<#>
*To attend online, join Zoom Meeting*
https://4z5y5.r.a.d.sendibm1.com/mk/cl/f/Qu65mxHMOuyATkYSpHoaTbGG4jZwv1_-MWx7ot4VbxeAIke9unypHJeH4F4osqR_7VF__gPicGS2Axw93Gx_S1kkj5Wq5DXhOwyEgKa6JK5M25akIQLx0MeG4hyMVIq2v12-yIpXar7aPUVNlH44RNaXv7JipcRs-B2UqfxBWvcksZNlGXA56m1DBv9F_Jy2wULVljU6LzEIQk8-CKcyVcxk8vnRpNgqBYE9_dxIQRzWUOTmcdtZlsoqnYIRggMELWTkR82CnTw1Yg
<#>
<#>
<#>
<#>
https://4z5y5.r.a.d.sendibm1.com/mk/cl/f/IfoXGKh5By8LrSGugLNRNVSXyH2VOsaTTdhsYfHWJYm7Npe6AIZy83XspgK0JMedxT1YYB-0VnuIqcP7-gtaE1X1cKcUPkgvAW2OrzavHj2JeGnyiMiPwxc5ubQnJunuhTw9KJ_-MgTfugMZH7ra3kfK9dJLeHd67p3l2o7GmnLdzo8-LSll22n_FkbDbpTgwo1JxphcWZmH9AP10g
https://4z5y5.r.a.d.sendibm1.com/mk/cl/f/8usPEOcCcpYYly0bCauwMS_rfjHMGgHJVtnSVNd_t5WugxAql95e1Z_u3zqR75EOApj9z8VZEaTpZt8hlnJkrzJTJL6CCCCgdWo8tIF4VN6Be_Nsw4c88Q_Yj_q7Z7D3ttEQEp_FpvOHbwt9Itxf7AkRd0RfLMhGjUJ1olIJt2cG32e_ZfT8-ZQm7kcJFGE
<#>
FONDAZIONE COLLEGIO CARLO ALBERTO
Piazza Arbarello 8 - 10122 Torino, Italy
phone: +39011 15630 800
segreteria@carloalberto.org - www.carloalberto.org
Facebook
https://4z5y5.r.a.d.sendibm1.com/mk/cl/f/96qDEBjI389G7GVS3NgHy4QU5ODhiSBUXH5afGHo0BT7bEoh5-TMpqq1iYgWi-EP5Z83IPepZNgUcrNPf-YGTNJ5QpXpbzGzeIN-qn-QWe73g_gLYjN0JmRYXP3J_r8EZxTGj-ygNmU-ExuDPZVHDlJP8Bra6Uz8QIzpsXAMW93hIvA092anBRWxARoLCttIWhmFjqlv2VvCf6HILUGteWZHap5K2B4
Twitter
https://4z5y5.r.a.d.sendibm1.com/mk/cl/f/NblUBI8B5HmNemhQAOs_hH9Lb0xHqj4qYn-UKTGURkPIU6e_-qH6R8J6594sN0oHsCa2ZBd8vSvQwmvScm9WyaCG4Pd1o5gUsuUzWPPPurJmNrbImAb06pc5EWCmNtRiVnKsLWUc8IBbWlXwOuvM6R5y-_JK2xL_o_ctpmCcp5QpvedNbG6Pbj_ZAOz_cEykcEcDhSJ8Gns
LinkedIn
https://4z5y5.r.a.d.sendibm1.com/mk/cl/f/rMMfajyr067kRoDawTi2FFsw8dBZwyxWPWTJGg5_Y9x5xN9F55ryYsdDlCjmIvPFA-zNxbJEUjraTy3fdb9RyBRBuvvKTM8hfF0h23fn-1UxQttVEUbVyo_P1AifM2qCQ2DxeNlyyNk6eTJ1NzdXF6JKrGR-EN0uxXe6M21R-uq59V88tfOY5V39jgI3LYtUQxydCZmk15wXfoviz6OgAKGNVLZpvr11-xr_ORHNmfaUP3YI9A
Instagram
https://4z5y5.r.a.d.sendibm1.com/mk/cl/f/0wIj1P36GYdj7O34J7nWI5VyNMMLDGzqBJzFyPAGjypZg9WZatShgLWVEgRnsFPwLSyxe-AjPRZFVfNhUQiBETYNuJxMcTRB19qCVjmPg4kMfx_W9sdLBlEdN732Z-EfW2ZDGeLMLEYIuevXgfbNnj-yDQOZHaVBwaiLF5bE5kwyhR2q9LNCVdhc7zGInsbWhdGksuC_Y9BcnRWAWEG0YhIe2dfmW12uRQmLvQ
Youtube
https://4z5y5.r.a.d.sendibm1.com/mk/cl/f/-09AvrjEn7eE8yYbc-ZCF8ERm7rdddPHtichcaktDRlmpA_fs0icTkFwHfzgez4COqndBoAHOq92s0mPZJKTuuBdwSfej36SlNzI-sgc3mfVF7Kpquv9crE0iYaN_26hmBjcg8jXICqa6eOA15pB2LUBTK-Vq56R-WLzIBXX6obSWOW2Hq4vsCNU9lvc9wIvHfewTTVSC3nxI1KPicTxkkSUyQMfo_JrfjJzMqUBddmB8MRYKQ
<#>
*INFORMATION UNDER THE NEW GENERAL DATA PROTECTION REGULATION (GDPR)*
Your personal information has been gathered for the exclusive purpose of
informing you about the Collegio's initiatives, considering our and your
legitimate interest or your consent. If you wish to have your personal
data modified please contact Fondazione Collegio Carlo Alberto, piazza
Arbarello 8, 1022 Torino, Italy - phone:+39011 15630 800 -
privacy@carloalberto.org
To find out about the policies regarding the processing of personal data
pursuant to articles 13-14 of EU Regulation 2016/679, consult the
information at the following link
https://www.carloalberto.org/privacy/
https://4z5y5.r.a.d.sendibm1.com/mk/cl/f/w47WAYiiyoXuTspFVWdMj21Cro1sSu1S1z13IyH6oIRf-NsRYtDtnZsl6gqmA-DISd7HGk3tskulRTEeI7gBeljmjhRnahVtCW08_ZPpJklFepF3-RWsgNqa42AoScQBFnTODqaXO4RnvnAr01E7VTa_dsepHjbQcwzxfXq_G6MIse5B8YEbupKv-B1sF3CgsEWPF8YXoUXkNj6DihXYL1-Q
*Unsubscribe*
https://4z5y5.r.a.d.sendibm1.com/mk/un/VRIj3q-1RFls3KVxbpZF_Uj0ukc9FDmZZHg7ZY7kFvQv6D5ibCCemmYvmYLuV6T8XLvex-Hb5yhrNaiKCz36vHNd4lJ1kYZqqnnLI6NSPO5SULzQynCDt1YK-kvu_sTQsHvViX8uSK3Al2VfZpWf9Rqa-MezJ6HhEm3rk1O2QXvyeLnMcOU
<#>
© 2021 Fondazione Collegio Carlo Alberto