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1 Introduction

The Method is the work in which Archimedes exposes his way of finding the
areas and volumes of various figures. It can be divided into three parts.
The first part is the preface addressed to Eratosthenes in which Archimedes
explains why he had been motivated to write this work. We find that he was
sending demonstrations of results that he had communicated before—the
volume of two novel solids, which we call hoof and vault in this article.

As Archimedes thought that it was a good occasion to reveal his way
of finding the results he had previously published with rigorous demonstra-
tion, he decided to include an exposition of this “way” (tropos in Greek, not
method, as is usually assumed in modern accounts.)?
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1 We use the words “area” and “volume” only for the sake of convenience. Archimedes
did not use these words, and his results were stated as comparison between figures. For
example he said “surface (not the area of surface) of any sphere is four times its greatest
circle.” This is the one of the features of Greek theoretical geometry, common at least to
Euclid, Archimedes and Apollonius. The use of the words like length, area and volume is
based on the possibility of expressing geometrical magnitudes by (real positive) numbers
taking any magnitude of the same dimension as unit. However, this was not possible for
Greek geometers who did not have real number.

2 The manuscript gives the title ephodos, not methodos, to this work which is usually
called Method, following Heiberg. Moreover, neither ephodos nor methodos appears in the



Thus the first eleven propositions show how the results in his previous
works (Quadrature of the Parabola, Sphere and Cylinder and Conoids and
Spheroids) were found. We call this group of propositions the second part of
the work.

The third and last part begins with Prop. 12, treats the two novel solids,
and gives a demonstration of their volumes. Unfortunately, the end of the
Method is lost. As is well known, the Method is known only through the
palimpsest found in 1906, and some pages had already been lost. The text of
the Method breaks off definitively near the end of the demonstration of the
volume of the hoof, the first of the two novel solids announced in the preface.
We have no testimony concerning how Archimedes demonstrated the volume
of the vault, the second novel solid.

In this article, we try to reconstruct this lost demonstration, based on
recent studies made after the reappearence of the palimpsest in 1998.

2 The Archimedean “way” of finding results

First, let us briefly look at the “way” Archimedes presents in this work.
In this section, we will see the simplest case for the paraboloid, and an
application for the sphere.

2.1 The simplest example: Paraboloid (Prop. 4)

The simplest example can be found in Prop. 4, where Archimedes com-
pares the paraboloid to the cylinder circumscribed about it® The paraboloid
BAG having axis AD, is cut by a plane M N, perpendicular to the axis.*
Archimedes shows that the segment BAG is half the cylinder circumscribed
about it. By the property of the parabola, the following proportion holds.

circle CO : circle MN =sq(CS) :sq(MS) = SA: AD.

preface or the text of this work. Archimedes always uses the word tropos to refer to his
“method” of virtual balance which is discussed in the present paper. See [Knobloch 2000,
83].

3 The manucript does not have proposition numbers. We use the propositions numbers
in [Heiberg 1910-15].

4 The diagrams of solid figures found in the manuscript are always planar, like fig. 1,
and we have often provided perspective drawings like fig. 2.
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Fig. 2: Method prop. 4: perspective diagram

Let us imagine a cylinder BGHE, circumscribed about the segment of
the paraboloid BAG. Prolong axis DA to (), so that QA is equal to DA,
and imagine a balance DA(Q) whose fulcrum is the point A. Then the above
proportion means that if the circle CO (section of the segment of parabola)
is moved to point (), it is in equilibrium on the balance with the circle M N
(section of the cylinder) remaining in place.

If all the sections of the paraboloid are thus moved and balanced, then
the whole paraboloid, moved to point @), is in equilibrium with the cylinder
remaining in place.® As the barycenter of the cylinder is the midpoint of the
axis AD, it follows that the (volume of the) paraboloid is half the cylinder.

This argument works because all the sections of the paraboloid are moved
to one and the same point (), while all the sections of the cylinder remain in
place. This is possible because the circle sections of the paraboloid, such as
the circle CO, increase in direct proportion with the distance AS from the
vertex A,which is the fulerum of the balance.®

5 Archimedes, carefully enough, does not say that the sections of the segment of the
paraboloid moved to point ) makes up again the segment itself. He says that the segment
of paraboloid is “filled” by its sections.

6 The expression “increase in direct proportion” is modern, with an algebraic back-
ground. This is never found in Greek geometry and we use it for the sake of convenience.



2.2 Sphere: Invention of an auxiliary solid

Let us look at another, slightly more complicated proposition. Prop. 2 de-
termines the volume of the sphere. In the following, we present the outline
of Archimedes’ argument, which is described in more in detail in Appendix
1, §9.1.

Let the sphere AG be cut by a plane M N, perpendicular to the diameter
AG. The section of the sphere is circle CO. This section is by no means in
proportion to the distance from the point A.
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Fig. 3: Proposition 2: sphere

Archimedes then adds a cone, AEZ, having as height the diameter of the
sphere, AG, and as base the circle EZ, whose diameter is twice the diameter
of the sphere. Then, the sum of the sections of the sphere and the cone,
that is the circle CO together with the circle PR, is in direct proportion to
the distance from AS, and these two circles moved to the other end of the
balance, (), are in equilibrium with the circle M N, remaining in place. The
barycenter of the cylinder is the point K, the midpoint of its axis AG, and
AK is half AQ. Therefore, by virtue of the law of the lever, the cylinder is
twice the the sphere and the cone taken together. The rest of the proposition
is quite simple (For details, see Appendix 1, §9.1.)

By adding an auxiliary solid (cone AEZ in this case), Archimedes suc-
ceeds in extending the use of the virtual balance to the sphere and other



solids.”

3 The first novel solid: Hoof

The hoof is one of the two novel solids that induced Archimedes to write
the letter to Eratosthenes, now known as the Method. The hoof is generated
cutting a cylinder by an oblique plane passing through the diameter of the
base circle.

Let there be a prism with a square base, and let a cylinder be inscribed in
it. And let a diameter of the base circle of the cylinder be drawn, parallel to
a side of the square, and let the cylinder be cut by an oblique plane passing
through this diameter and one of the sides of the square opposite to the base.
The hoof is the solid contained by the semicircle in the base of the cylinder,
the cutting plane, and the surface of the cylinder.

Fig. 4: A hoof

Archimedes found that the hoof is one sixth of the prism. This is the first
solid found to be equal to some other solid contained by planes only. Al-
though Archimedes had obtained several results concerning solids contained
by various curved surfaces of different solids (sphere, paraboloid, etc.), they
were always compared with other solids contained by curved surface, like
cone and cylinder (cf. note 1). The fact that Archimedes was very proud of

7 The volume of the hyperboloid, for which Archimedes does not describe the detail of
the argument in Prop. 11, can be determined by the same technique of adding an auxiliary
solid. For this reconstruction, see [Hayashi 1994].



this novel result can be seen from what he says about it in the preface of the
Method.

He gives no less than three arguments for the volume of this solid:

(1) First (Prop. 124+13) by using the virtual balance which was already
familiar to him (for details, §9.2.2).% What is strange to us in this argument
is that Archimedes does not see that the virtual balance could be used in
much the same way as in Prop. 2, where he determined the volume of the
sphere; and the whole argument would have been much simpler. We have
reconstructed this argument in Appendix 1 (§9.2.1).

(2) Then Archimedes gives another argument using plane sections without
breadth (like Cavalieri’s indivisibles) in Prop. 14.

(3) In the following Prop. 15, this is transformed into a rigorous demon-
stration using reductio ad absurdum (§9.2.3) twice. We shall call this kind of
argument, often called the “method of exhaustion”, simply double reductio
ad absurdum. °

A large portion of Prop. 15, the last extant proposition of the Method,
is lost, and there is no further folium which contains text from this work.
So we have no direct textual witness for the reconstruction of Archimedes’
arguments for the other solid, the vault.

4 Possible propositions for the vault

We now proceed to the second novel solid in the Method which we call “vault”.
It is the solid bounded by the surfaces of two cylinders having equal bases
whose axes meet at a right angle each other. In short, it is an intersection of
two equal cylinders.

Let AA" and BB’ be axes of cylinders, meeting at point K. Their base
circles are EZHZ' and EY HY' respectively. (Archimedes describes the solid
within the cube to which the intersection is inscribed, but we have prolonged
both cylinders in our figure to make the intersection clearly visible. Note that
we have only Archimedes’ verbal presentation and no diagram for this solid
is extant in the manuscript.) In the figure, only the half of the intersection is

8 Heiberg divided the proposition into two, probably because there are diagrams at the
end of what he named Prop. 12. We follow his numbering, and write Prop. 12413 when
we refer to the whole argument.

9 On the so-called method of exhaustion, and its appearance as a real method in
Western mathematics, see [Napolitani and Saito 2004].



shown; the other half of the solid, behind the plane of Y ZY’Z’| is symmetrical
to the part shown in the figure.

Archimedes states, in the preface, that this solid is two-thirds of the cube
circumscribed about the intersection.

Fig. 5: A “vault” (intersection of cylinders)

For us, the most important property of the vault is a square section formed
by passing a plane parallel to the axes of the two cylinders (hatched in the
figure). Indeed, all of the reconstructions hitherto proposed for Archimedes’
lost arguments of the vault make use of this square section.

Our conclusion in the present paper, however, is that Archimedes cannot
have argued in this way. Let us first look at the mathematically plausible
reconstructions hitherto accepted.

Scholars have unanimously claimed that there were at least two differ-
ent arguments: first a mechanical and heuristic one, then a geometric and
rigorous one. This assumption seems to be natural, for there were three
arguments for the hoof: besides the mechanical arguments in Prop. 12+13,
there were two geometrical arguments, one using “indivisibles” (Prop. 14)
and the other by a rigorous reductio ad absurdum (Prop. 15).

Let us now consider the reconstructed arguments or demonstrations, bear-
ing in mind that they are all mathematical reconstructions, with no direct



textual evidence, as Ver Eecke rightly observed.!?

4.1 Reconstruction by virtual balance

As for the use of virtual balance, the argument for the sphere (Prop. 2) is valid
also for the vault. This mathematical fact was pointed out as early as in 1907
only one year after the discovery of the Method ([Heiberg and Zeuthen 1907,
[Reinach 1907]). Here we give the basic idea of the argument (for more details
see §9.3.1).

In the preceding fig. 5, imagine a sphere of which FEZHZ' and EY HY’
are great circles. Then, its section by the plane which cuts the hatched square
from the vault, is the circle inscribed in the square (or the square section of
the intersection is circumscribed about the section of the sphere). So, if one
substitutes the sphere, the cylinder and the cone appearing in the argument
of the volume of the shere (Prop. 2, §9.1) by the vault, the prism and the
pyramid respectively, then the rest of the argument is practically the same
and the vault turns out to be two-thirds of the cube.

Rufini gives the proposition number 16 to this argument [Rufini 1926].
So we call this hypothetical proposition “Rufini 16.”

Note that the arguments in Archimedes’ Prop. 12+13 for the hoof are
completely different from this reconstruction for the vault. We will return to
this point later.

4.2 Reconstruction by indivisibles, and by double re-
ductio ad absurdum

For the vault, an argument by indivisibles, like Prop. 14 for the hoof is, of
course, possible. This argument is based on the fact that the square section
of the vault is eight times the triangular section of a particular hoof (see
§9.3.2 and fig. 18 for detail) .

10 Ver Eecke, referring to the reconstructions in [Heiberg and Zeuthen 1907]
[Reinach 1907] and [Heath 1912], expresses his doubts about their significance as historical
research.

Ces reconstitutions, qui pourraient du reste étre étendues a un grand nombre
d’autres propositions, n’intéressent que comme applications de la méthode
mécanique d’Archimede, ou comme exercices d’archéologie mathématique.
[Ver Eecke 1921, 2:519]



balance indivisible | reductio ad absurdum
hoof Prop. 12413 | Prop. 14 Prop. 15
(89.2.2) (89.2.3)
intersection of cyl. Rufini 16 Sato 17 Rufini 17
(89.3.1) (89.3.2)

Table 1: Extant propositions for the hoof, and reconstructed propositions for
the vault

Thus, if one compares the vault with the circumscribed cube, just as
Archimedes compared the hoof with the triangular prism circumscribed about
it in Prop. 14, the rest of the proposition is so similar to Prop. 14, that Sato
even tried to reconstruct the Greek text of this hypothetical argument which
he named 17, depending heavily on the extant text of Prop. 14 [Sato 1986].!!

Once a proposition by indivisibles—similar to the extant Prop. 14—has
been reconstructed, it is no more than routine (though tedious) work to
convert this argument by indivisibles, to a demonstration by double reductio
ad absurdum. Rufini numbered this hypothetical Prop. 17, (different from
Sato’s Prop. 17), and described its outline [Rufini 1926, 174-178]).

Thus, one can reconstruct three arguments for the lost pages at the end
of the Method: (1) an heuristic argument for finding the volume of the vault
by way of the virtual balance, modelled after Prop. 2 (Rufini’s Prop. 16),
(2) then an argument by indivisibles like Prop. 14 (Sato’s Prop. 17), (3) and
a rigorous demonstration like Prop. 15 (Rufini’s Prop. 17). In the preface,
Archimedes promises only the last one, the rigorous demonstration. However,
at least one of the former two arguments can also be expected, as in the case
of the hoof. This has been the consensus of the scholars until now.

4.3 The problem with the current reconstruction

In table, 1 above, three approaches are shown (balance, indivisibles and
reductio ad absurdum) for each of the two novel solids, namely, the hoof
and the vault. The arguments for the hoof are extant in the palimpsest
either partially or fully, while those for the vault are completely lost, and
are reconstrctions. Among these, the indivisible argument (Sato 17) and the
demonstration by reductio ad absurdum (Rufini 17) are simple adaptations

I He assumed another proposition, 16, before it, which would have had recourse to the
virtual balance. This hypothetical “Prop. 16” corresponds to Rufini’s 16.

9



of the extant propositions for the hoof (Prop. 14 and 15, respectively). This
was made possible by the fact that the square section of the vault is always
eight times the triangular section of the hoof.!?

However, the arguments by virtual balance for the two solids are com-
pletely different. Archimedes applies the virtual balance to the hoof in Prop.
12413, and his argument depends on a particular property of the hoof, that
its height is in direct proportion to the distance from the diameter of the
base.

So what would happen if we accepted the reconstructions for the vault?
If at least one of the two reconstructions that do not use the virtual balance
(i.e., Sato 17 or Rufini 17 in table 1) corresponded to what Archimedes really
wrote, then the parallelism between the arguments between the hoof and
vault would have been obvious to any careful reader, not to say Archimedes
himself, for the square section of the latter is eight times the triangular section
of the former, and the structure of the arguments is the same.

And if, in addition, the manuscript had also contained the argument for
the vault by means of an virtual balance (like Rufini 16 which uses the same
square section as in Sato 17 or Rufini 17), then it would have been rather
difficult not to wonder if an argument by virtual balance, similar to Rufini
16, would not be possible for the hoof, too. This is mathematically possible,
indeed, as is shown in §9.2.1 in Appendix 1.

However, the extant text of Prop. 12+13 for the hoof does not show
awareness of this fact on Archimedes’ part. So if one accepts the current re-
constructions treating the vault, one has difficulty in explaining the structure
of the argument of Prop. 12+13.

Anticipating the conclusion of the present article, we reply that none of
the reconstructed arguments for the vault existed in the palimpsest, and that
Archimedes’ approach to this solid was completely different.

5 The space for the lost propositions

We have pointed out a problem in accepting the reconstructions concern-
ing the vault, which are mathematically fully acceptable (and have been
accepted), consisting only of techniques used by Archimedes himself.

12 This relation between the sections of the two solids is visually represented in fig. 18
in Appendix 1. Compare this figure with fig. 5.

10



Now let us see the problem from another point of view: how many pages
of the manuscript were occupied by the lost proposition(s) for the vault?

5.1 Mathematical estimate

Before entering into codicological arguments, let us estimate the length of
three hypothetical propositions in table 1. The argument by virtual balance
(Rufini 16) would have been approximately of the same length as Prop. 2,
of which it is an adaptation. Prop. 2 occupies a little more than 2 pages.'?
The ‘indivisible’ argument for the hoof (Prop. 14) has 2 pages and some
lines, while the rigorous proof by double reductio (Prop. 15) occupies about
6 pages.’* The corresponding propositions to each of these (Sato 17 and
Rufini 17, respectively) would have been be more or less of the same length.
So we would expect about ten pages in total for three propositions concerning
this solid, and at the least six pages, because it is the rigorous demonstration
that Archimedes promised in the preface.

5.2 Codicological arguments

Codicological arguments, however, show that there cannot have been such
ample space at the end of the Method for these proposed propositions on
the volume of the vault. The space is only about three pages, against any
mathematical expectations—ten pages for all the three propositions, and the
demonstration alone would require six pages!

Let us now see how this estimate has been done.'® Like other medieval
manuscripts, the palimpsest containing the Archimedean manuscript, as well
as the original Archimedean manuscript whose parchments have been reused
for the palimpsest, is materially a compilation of quires. A quire consists of

13 The ‘page’ is that of the codex, and consists of 2 columns, 34-36 lines, each line
containing about 25 characters. One page of the codex corresponds to about three pages
of the Greek text in Heiberg’s edition.

14 Only a part of this proposition is extant, and this estimate depends on the recon-
struction of the quires of the codex, which we will discuss later.

15 This argument is based on the reconstruction of the folia and quires in the
Archimedean codex, set out in Christies’ catalogue for the auction in 1998 prepared by
Nigel Wilson, who writes, in a correspondence to one of the authors “The reconstruction
of the quires in the sale catalogue was to a large extent the work of Hope Mayo, but I
think it is sound.” We present here this result with our explanations.

11



four parchment sheets (less often three or five or more), folded in half, put
one inside the other and sewn at the center.

The difficulty with the folia of the Archimedean codex is that they are no
longer bound; for the codex was unbound, the folia were cut into two halves
(that is, into single pages), then themselves folded in half and reused for
the prayer book, which is thus half the size of the original Archimedean
manuscript (fig. 6). Of course, the order of the original Archimedean
manuscript is not preserved in the extant prayer book, and not all the folia
that the original contained are present in it.

rotate 90 degrees

Fig. 6: Recycling the parchment

However, where the Archimedean text is readable, the text itself permits
us to determine the order of the pages in the original codex, and to assign
folium number to each parchment according to the order of the Archimedean
text. Thus, the folia of the Archimedean palimpsest now have double num-
berings. One is the folium number in the prayer book, the other is the folium
number in the order of the Archimedean text. The former, like 46r-43v, is
shown in the margin of Heiberg’s edition of the Method, while the latter, like
A15, can be found in the names of the digitized images of each page of the
palimpsest.6

16 The folia from 41 to 48 of the prayer book constitutes one quire, whose decompo-
sition yields four sheets of parchments 41-48, 42-47, 43-46 and 44-45. The folium (or
bi-folium) 43-46 is the 15th folium among the extant folia of Archimedean manuscript,
and its recto side A15r is double pages 46r-43v of the prayer book. So A15=461-43v. (See
the reconstruction of quires in Appendix 2.)

The page 46r is written before 43v, because, when this page is placed so that the
Archimedean text is readable, the page 46r of the prayer book is the upper half of the

12



Thus the order of the folia originating in Archimedean codex is known,
but the order of the text does not show where one quire began and how
many folia were bounded in one quire. However, a careful comparison of
the folium number of the prayer book and that of the Archimedean codex
can reveal, almost certainly, the composition of the quires in the original
Archimedean codex. For example, we are sure that the eight folia from Al14
to A21 constituted one quire.

AlTr

Reconstructed quires
of Archimedean codex
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44v
cut the parchment into two, .

Extant quire of the
and put one over the other prayer book (41-48)

Fig. 7: Reconstruction of the quire

To illustrate how the construction of the quires is determined, let us take,
for example, the two folia A15 and A20. In the prayer book, they are bi-folia

page, and the 43v is the lower half. The images of this page on the web have the name
beginning with “46r-043v Archilbr.” The images of all the pages of the palimpsest are
available at http://www.archimedespalimpsest.org.

1
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46-43 and 45-44 respectively. This means that these two folia were separated
by four intermediate folia (A16, 17, 18, 19) in the original manuscript, but
are two consecutive folia in the prayer book. If this has not happened by
chance, the only reasonable explanation is that A15 and A20 are two halves
of one folium in the original Archimedean codex (see Fig. 7), and they were
put one over the other to be reused in the prayer book.

Aldr 169r-164v | Aldv 169v—164r
Al5r  46r-43v Al5v  46v—43r
Al6r  57r-64v Al6v  57v—64r
Al7r  66r-Tlv Al7v  66v-Tlr
Al8r  65r-72v Al8v  65v-T2r
Al9r  58r-63v A19v  58v—63r
A20r  45r-44v A20v  45v—44r
A21r 170r-163v | A21v  170v—163r

Table 2: Reconstruction of the first quire containing Method

This conclusion is supported by a similar examination of the arrangement
of the eight folia from A14 to A21 in the prayer book (Table 2), and we are
sure that this cannot have happened by chance. The folia A14 and A21
originally formed one folium, which was cut into two halves, and has become
two consecutive folia (163-170 and 164-169) in the prayer book. The table
shows that the same thing has happened for the three inner folia of the same
quire of the Archimedean codex, A15+A20, A164+A19 and A17+A18, which
ended up in different places in the prayer book, but the two half folia obtained
from one original folium are always consecutive in the prayer book.

The quire A14-A21 that we have reconstructed contains the beginning
part of the Method, which begins at the beginning of the second column
of the second folium A15r.'” This quire covers the preface, assumptions
(prolambanomena), Prop. 1-5, and a part of Prop. 6.

The following quire is also reconstructible, but we are less lucky. As is
shown in table 3, we have to assume that this quire has lost its sixth folium
and consists of A22-A26+one lost folium+A27+A28. Moreover, the lower
part of A23 had already been lost before Heiberg consulted the palimpsest.

17 The preceding part, the folium Al4rv and the first column of A15r contains the final
part of the Floating Bodies.

14



The loss of the lower half of one folium results in four lacunae, two in recto
and two in verso, for the text is written in two columns. The first two
lacunae are in Prop. 7, the latter two in Prop. 9 (see Appendix 2). Despite
these lacunae, it has been possible to reconstruct the outline of the arguments
in these propositions.

A22r 157r-160v | A22v  157v-160r
A23r  104v-*** A23v  104r-***
A24r 166r-167v A24v  166v-167r
A25r  48r-41v A25v  48v-41r
A26r  47r-42v A26v  47v-42r

A27r 110r-105v A27v  105v-110r
A28r 158r-159v A28v  158v-159r

Table 3: Second quire containing Method

Much of the content of the lost folium between A26 and A27 can also be
reconstructed. Prop. 13 begins in A26v, and the extant text (six lines and one
whole column; see [Heiberg 1910-15, 2:492]) is just enough to infer the ar-
gument intended by Archimedes, which is fairly complicated and would have
occupied most of the lost folium, and the following Prop. 14, begins exactly
at the beginning of the following folium A27. So the possibility is excluded
that there might have been another, unknown, proposition, between Prop.
13 and 14, except that there may have been some remarks by Archimedes
like the ones between Prop. 1 and 2, or at the end of Prop. 2.

Prop. 14 continues to the next folium A28, which is the last in this quire,
and ends in the middle of the first column of its recto page. Then comes Prop.
15, the last extant proposition of the Method, and continues into another quire
of which only one folium is extant. We have thus reconstructed the first two
quires containing the Method, and we can be sure no proposition has been
totally lost up to this point.

Now let us examine the only extant folium of the following (third) quire
of the Method, which has the folium number 165-168 in the prayer book.

This is an exceptional folium, for it is not one page of Archimedes codex
as all other folia in the palimpsest, but spans two pages; it is in fact the
central part of one original parchment sheet (fig. 8). It was placed upside
down when the prayer-book text was written on it, apparently to minimize

15



the interference with the Archimedean text, which remains visible. In the
left page (165v of the prayer book, then 165r), we read part of Prop. 15.
Each column contains only 27 lines of the usual 36 lines in the Archimedean
codex, so that about 9 lines are completely lost.'® In both pages, each line
in the outer column is partly lost, either in the beginning or in the end, as
is shown in fig. 8.

1691 AB9T

Fig. 8: The last extant folium containg the Method

The opposite page (168v and 168r), contains the text of the Spiral Lines.
This means that a part of Prop. 15 of the Method and the beginning part of
the Spiral Lines is in the same quire. How long was the length of the lost
text between these two pages?

Since most of the reconstructed quires of Archimedean codex are quater-
nions, that is, quires of four folia (there are also a few ternions, quires of
three folia), we may assume that this quire of which we possess only (the
central part of) one folium was also a quaternion. We will later see that the
possibility of a ternion is excluded. Then, the number of intermediate pages
depends on the position of the extant folium 165-168 in the original quire. If
it was the outermost folium, there must have been 6 folia or 12 pages between
folium 165 (last extant part of the Method) and folium 168 (containing the
text of Spiral Lines). However this is not the case.

The subsequent text of the Spiral Lines is found in the palimpsest, and

18In fig. 8, We assumed that about the same number of lines are lost above and below
the extant folium, though this is not guaranteed.

16



folium 168r is followed by a ternion, then by a quaternion. These two quires
are complete and the text is continuous. Only between folium 168r and the
subsequent ternion is there a gap corresponding to two pauges.19

This means that the extant folium 165-168 is the second folium from
the outside of the quire. Consequently, the lost folia of this quire are (see
also Appendix 2): (1) the first folium containing two pages of Prop. 15 of
the Method, (2) four folia or eight pages between the extant text of Method
Prop. 15 in folium 165 and the text of the Spiral Lines in folium 168, and
(3) last folium (two pages) corresponding the lacuna in the text of the Spiral
Lines.

We also know the length of the beginning part of the Spiral Lines before
folium 168. In Heiberg’s edition, there are about 8500 words, which corre-
spond to four and a half pages (i.e., one column) in the manuscript.? If
we assume that the Spiral Lines begins at the top of a column as does the
Method, the Spiral Lines very likely begins at the second column of the verso
of the fourth folium of the quire (see Appendix 2)%!.

Therefore, there are only three pages and one column for the final part
of the Method, of which at least one column was occupied by the concluding
part of the Prop. 15. This leaves only three pages, perhaps even less, for
the whole set of the lost propositions for the vault. In Appendix 2, we have
shown in a somewhat schematic way, the reconstruction of the three quires
containing the text of the Method in the original Archimedean codex, in
which we have indicated the extant folia and lost (or illegible) folia?.

19 We can precisely estimate the length of this lacuna, for the complete text of Spiral
Lines is preserved in other manuscripts.

20Tn the following part of the Spiral Lines, where the text of the palimpsest (C in
[Heiberg 1910-15]) is available, there is no such discrepancy between the reading of C and
other manuscritps as to affect the estimate of the length of the text. We assume that this
is also the case in the beginning part where the palimpsest is lost.

21The possibility of a ternion is excluded at this point, for there would not be enough
space even for the beginning part of the Spiral Lines only.

22We have to admit that a feeble possibility cannot be excluded that the quire at issue
was a quinternion, a quire of five folia, so that there were seven pages, instead of three, for
the lost proposition(s) on the vault. However, there is no quinternion among the recon-
stucted quires of Archimedean codex, and it seems arbitrary to assume here a quinternion
which is not attested elsewhere in the codex.
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6 What demonstration would fit in only three
pages?

This space is surprisingly short. As we have argued, the lost text must contain
a rigorous demonstration for the volume of the vault, and such a space is too
small for the usual lengthy Archimedean arguments by double reductio ad
absurdum, as the demonstration of the volume of a solid contained by curved
surfaces (in this case like Rufini 17). Judging from the extant Prop. 15, this
proposition would be as long as six pages.

The lost pages at the end of the Method could not contain such a demon-
stration, let alone a set of three propositions as those for the hoof.

Then, in this little space, what kind of argument can we imagine for the
vault which would be consistent with Archimedes’ words in the preface where
he promised to give its demonstration?

We seem to be at an impasse, but there is a very simple solution. The
vault can be divided into eight hoofs, all equal to each other. Fig. 9 shows
one of the eight such hoofs cut from the vault. One only has to divide the
vault by two planes passing the border lines of two cylinder surfaces (shown
by dotted line in the figure), then by two planes through one axis of the
cylinders and perpendicular to the other axis. We have argued above that
the square section of the vault is eight times the triangular section of the
hoof, but similar relations also holds between the entire solids. This fact was
already pointed out in [Heiberg and Zeuthen 1907, 357] and [Reinach 1907,
960-61], but only en passant, after showing a reconstruction of a proposition
by virtual balance (Rufini 16).

There may be some doubt about whether a proof by decomposition of
the vault into hoofs would be too simple and straightforward to fill three
manuscript pages.

However, the vault is not a simple solid like the sphere, and mere de-
scription of the solid requires a certain space. In the preface of the Method,
Archimedes states the volume of the vault as follows:

If in a cube a cylinder be inscribed which has its bases in the
opposite parallelograms and touches with its surface the remain-
ing four planes (faces), and if there also be inscribed in the
same cube another cylinder which has its bases in other paral-
lelograms and touches with its surface the remaining four planes
(faces), then the figure bounded by the surfaces of the cylinders,
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Fig. 9: Decomposition of the vault into 8 hoofs

which is within both cylinders, is two-thirds of the whole cube.
[Heath 1912, suppl. p. 12]

This enunciation occupies 16 lines in the manuscript, almost one fourth of
a page (a page consists of two columns, which has usually 36 lines). The lost
proposition must have begun with a description like this, then there must
have been the exposition (ekthesis) referring to the diagram by the names
of the points. To describe the solid, it is necessary to identify which of the
cylinder surfaces appear as the surface of the intersection. Since Archimedes
does not use perspective drawing in the Method, probably he drew a plane
diagram like fig. 10, and developed some argument purporting to establish
that the lines EG and F'H are the borders of the two cylindrical surfaces
constituting the surface of the solid of intersection, and that the areas EK F
and GKH are the surface of the cylinder having the axis AB, while the
areas FFKG and HKE represent the surface of the cylinder having the axis
CD, etc., etc. Such an affirmation must have been accompanied by some
justificative arguments. Only after such descriptions and arguments, it is
possible to assert that the vault is decomposable into eight hoofs which are
equal to one another. He may well have used another diagram to show the
hoof obtained by decomposition.

All these arguments and diagrams seem enough to fill most of the space of
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Fig. 10: A possible planar diagram for the vault

three pages. Moreover, the concluding part of Prop. 15, which we assumed to
occupy just one column, may have been longer, and some concluding remarks
pertaining to the whole work may have existed after the demonstration of
the volume of the vault. Thus three pages seem to be just enough to contain
the proof we propose.

7 Archimedes as ancient geometer: a revised
portrait

We have argued that the lost demonstration of the volume of the vault was
probably its decomposition into eight hoofs, whose volume had already been
determined in Prop. 12-15.

In this section, we argue that this interpretation suggests a considerable
change of the image of Archimedes as mathematician, which has been exces-
sively modernized.

7.1 Difficulty resolved: An interpretation of the Method

We have pointed out the difficulty of the current reconstruction of the de-
termination of the volume of the vault, in section 4.3. If we assume that
Archimedes cut the solid in such a way to obtain square sections and used
the virtual balance much in the same way as in Prop. 2 for the sphere (Rufini
16; see §9.3.1), it is difficult to explain why he did not adopt a similar ar-
gument for the hoof, for which he developed a series of very complicated
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arguments in Prop. 12+13.%

In our interpretation, Archimedes did not cut the vault by such planes. He
first observed that its surface consists of two parts—the surface of one of the
intersecting cylinders, or that of the other—and cut the solid of intersection
according to the border line of the two parts. Thus he gets four segments
each of which is one fourth of the whole solid. If one looks at this segment
along the line KZ (see fig. 9 above), it is easy to see that its ‘height’ is
proportional to the distance from K. This is the convenient condition for
an approach by the virtual balance. At this point, or earlier, he may have
realized that he could divide the segment into two symmetrical parts cutting
it by the circle EZHZ’, obtaining the hoof.

Thus the question of the volume of the vault is reduced to that of the
hoof, and the natural approach is to introduce the virtual balance whose
arm is KZ with fulcrum K (see §9.2.2). This is Prop. 12 of the Method, and
though this approach brought about an apparently no less difficult problem
of determining the barycenter of a semicircle, Archimedes somehow circum-
vented it in Prop. 13, and obtained the result. In the latter proposition, he
cut the solids by planes parallel to the arm of the balance, and this new way
of cutting the solid, through which he obtained the result he was looking for,
probably suggested the ‘indivisible’ solution (Prop. 14), which could easily be
transformed into a rigorous demonstration by double reductio ad absurdum
(Prop. 15).%

With this interpretation, the difficulty with Prop. 12413 disappears.
Archimedes did not cut the vault in the manner of generating square sec-
tions, for he first divided it into hoofs. We should add that his approach
was rather natural. For us moderns, equipped with the diabolic technique
of integral calculus, the volume of a solid has little to do with its shape or
appearance. One only has to find a set of parallel planes which generates
‘simple’ sections (more precisely, the sections whose areas can be expressed by

23 Reviel Netz suggests that Archimedes was ‘playful’ and ‘sly’ ([Netz and Noel 2007,
37], though not in this context). Such an interpretation would resolve this difficulty, for
Archimedes might well have written confusing and unnecessarily complicated arguments
anywhere on purpose. Our arguments, however, try to defend an honest Archimedes.

24 Tt seems that Prop. 14 offers a new, powerful approach for the determination areas
and volumes, though we know nothing about its application to other figures. Probably
Archimedes did not have time to develop its potentiality after he wrote Method, which was
very probably written after all other major works sent to Alexandria, from Quadrature of
Parabola to Conoids and Spheroids.
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integrable functions). And since Archimedes cuts the conoids and spheroids
(paraboloids, hyperboloids and ellipsoids in our terms) always by planes per-
pendicular to their axis, we tacitly assume that Archimedes shared our idea,
that is, to find the volume of a solid is to find appropriate parallel sections.

In short, we have thus overestimated the ‘modern’ ingredients in Archimedes’
works. If he treated the paraboloid, spheroid and the hyperboloid in the same
manner in his preceding work Conoids and Spheroids, this was because they
were all generated by rotation, and the same approach was valid for all of
them. However, the vault is not a solid of rotation, and he observed its shape
and appearence to find an appropriate approach. According to our interpre-
tation, he first cut this solid by the planes through the border lines of the
surfaces of two cylinders, so that the segments are part of one cylinder, not
some entangled mixture of two cylinders. For him, this simplifies the situa-
tion. Do you ask why he did not cut the solid by planes that would generate
square sections? The answer is now simple. First, he did not share our con-
cept that determining volume implies finding appropriate parallel sections.
There was no reason to cut the intersection of two cylinders in such a way as
to mix up the two cylinders, while it can obviously be divided into segments,
each of which consists of ‘one’ cylinder, not of ‘two.”?

Moreover, cutting the solid through the curve of the borders of the cylin-
drical surfaces, Archimedes obtains a segment whose height is proportional
to the distance from the center of original solid as we have seen above. Then
there is no reason to make other trials than to introduce the usual tool of
virtual balance, unless this approach happens to prove impracticable. This
approach led him to a very difficult problem as we have seen, but fortunately,
his genius found a solution to it in Prop. 13.

Our interpretation, then, suggests the figure of a mathematician much
less modern than we are used to imagine. He did not recognize the general
approach of cutting the solid by appropriate planes to determine its vol-

25 It should be remembered, that 18 centuries later, Piero della Francesca treated the
vault, and he cut this solid and circumscribed cube by a plane through the straight line
passing through the intersection of the axes of cylinders, and perpendicular to both axes.
(Then the cutting plane can be rotated around this straight line.) The section of the solid
is always that of one cylinder, and is an ellipse. Then he compared this section with the cir-
cumscribed rectangle, which is the section of the cube produced by the same cutting plane.
By ingenuous, but not very rigorous inferences, he concluded correctly that the vault is
two thirds of the circumscribed cube. For details, see [Gamba, Montbelli, Piccinetti 2006]

This is historical evidence that cutting the vault by planes which generate square sections
is not a universally obvious approach.
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ume. His approach was much less general, and the appearance of a solid
was a non-negligible factor in his investigation. Losing much of Archimedes’
‘modernity’, we have instead recovered his honesty and sincerity at least in
the Method, for we no longer have to ascribe to him a playful or sly character
when he develops the complicated arguments in Prop. 12+13 of the Method.
If this conclusion seems strange, it is because of what has been said about
Method since its discovery. Modern scholars have been misled by the title of
the work “Method”, invented by Heiberg (note 2), and by his remarks that
Archimedes’ method in this work was equivalent to the integral calculus.?®

7.2 Archimedes as ancient geometer

We should rather look at Archimedes in the context of Greek geometry, of
which at least a basic part is still taught at schools. Indeed, our school
geometry—with its theorems on congruence of triangles, similar figures, and
so on—is an adaptation of Euclid’s Flements which were directly used in the
classrooms until 19th century. The objects are figures which are described
by words and shown in the diagrams. The demonstration is directly referred
to the objects shown in the diagrams or at least connected to them by labels
(e.g., the expression “square on AB,” where the square is not always really
drawn in the diagram). Geometry and arithmetic were clearly separated,
there is no symbolic language similar to our symbolic algebra.

The objects (figures) are formalizations of either concrete objects, or of ef-
fective solution procedures. Let us illustrate this last point. For us, an ellipse
is the locus of zeros of a polynomial of second degree with two variables:

Az? + Bay + Cy* + Dx + Ey + F = 0; where B? — 4AC < 0;

In other words, a curve is defined by an abstract property of an algebraic
nature, which precedes the object itself. For the Greeks, however, the ellipse
is the curve obtained by cutting a cone with a plane that intersects all of its
generatrices. A curve is defined by a specific procedure, then its properties
are derived thereof. Greek mathematics is thus a mathematics of individual
objects, each generated from a suitable constructive process.?

26 “Die neue Methode des Archimedes ist tatsdchlich mit der Integralrechnung iden-

tisch.” [Heiberg 1907, 302].
2TThis is the view on the objects of Greek mathematics given by [Giusti 1999] (esp.
capitolo 5).
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So every argument is referred to some figure shown in the diagram, and
this means that there was no way of describing a general method of solution.
If we have discussed about the double reductio, not the method of exhaustion
in the present article, this is because neither Euclid, nor Archimedes, nor
any Greek mathematician has ever spoken of this demonstration technique
in general terms. We have several propositions in which we find similar
sequences of particular arguments, and it is we that give a name to this
pattern of arguments. The same is true for what we have called the virtual
balance of Archimedes in the present article.

If we adopt this point of view, some consequences immediately follow:

e Greek mathematics is not a general mathematics, unlike post-Cartesian
mathematics.

e There are no general objects, still less general methods.

e The procedure of measuring an object is a formalization of some con-
crete process; indirect confrontations are applied only if the direct one
is proved impossible.

And Archimedes’ works also fits these general characteristics well. His
extant works are divided into two groups according to two major themes:
geometry of measure and mechanics. In the works of geometry (Measurement
of Circle, and the four works sent to Alexandria: On the Sphere and the
Cylinder, Quadrature of the Parabola, Spiral Lines, Conoids and Spheroids),
Archimedes deals with the problem of measuring, that is, determining the
size of geometrical objects, through direct comparison between an “unknown”
figure (e. g., the sphere) and a better known one (the cylinder), and shows,
for example, that the sphere is two thirds of the circumscribed cylinder,
or that the paraboloid is one and a half of the cone inscribed in it and
so on. This is why Archimedes was so proud to tell Erathosthenes, in the
preface of the Method, that he had succeeded in demonstrating for the first
time the equivalence between a solid curved figure and a “straight” one (a
parallelepiped). Quadrature (or cubature in this case) of a figure was not the
result of finding a formula, like V' = %7?7“3 , but of finding the simplest known
figure equal to it.

Our investigation in the present article confirms that Archimedes was
working within the framework of Greek geometry, despite of his numerous
and marvelous results.
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8 Concluding remarks: How did Archimedes
come to consider the novel solids?

Before concluding this article, we should mention a problem which is brought
about by our interpretation of the last proposition of the Method.

According to the hitherto prevailing interpretation, Archimedes used a
parallel argument for the hoof and the vault. Then, it was not so important
to decide how he came to consider these particular solids. He might even have
started from the method of determining the volume. A possibility was that
he was perhaps looking for some solid for which the same argument for the
volume of the sphere was valid, and found the vault which can be obtained by
replacing the circles (section of the sphere by parallel planes) with squares.
Then, replacing these square sections by similar triangles, a hoof can be
obtained. Though one could only speak of a possibility, Archimedes’ novel
solids may have been invented ‘inversely’ from the way of determining their
volume.?®

Our interpretation in the present article, however, has confirmed a ‘clas-
sical” figure of Archimedes, denying his recognition of the common method
between the sphere and the two novel solids. But if Archimedes was not
induced to consider the novel solids because of the common method used to
determine their volume, how did he come to consider these novel solids? As
we have proposed that Archimedes found the hoof during his investigation
of the vault, the question is reduced to one of considering the vault.

Concerning this question, we have a very interesting piece of archaeolog-
ical evidence. Recent excavations of a bath at Morgantina, in Sicily, have
revealed the existence of two barrel vaults arranged at a right angle, although
without intersecting.?? This reminds us of the discovery of remains of a “hy-
draulic establishment” in Syracuse by the Italian archaeologist G. Cultrera
in the 1930s, where the same technique was used [Cultrera 1938]. The exis-
tence of this type of construction at Morgantina—at that time part of the
Syracusan kingdom of Hieron II—and the existence of at least one similar
building in Syracuse itself, suggest the possibility that Archimedes was in-
spired by some to consider the volume of the vault. If we are allowed to put
it dramatically, Archimedes, lying in the bath or having a massage, asked
himself the question: what if those two vaults were to intersect? What kind

28 One of the authors was once inclined to this position. See [Saito 2006].
29 For a more detailed description of the excavation, see [Lucore 2009].
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of shape would result? It should be noted that the construction techniques
used at Morgantina (and most likely at Syracuse) were not such that would
easily have allowed the construction of a cross vault. However, it is not really
a question of whether Archimedes knew this public bath directly or indirecly.
What is important is that there is a possibility that Archimedes may have
found the inspiration of considering the vault from some real and existing
objects like vaults, so that we do not have to assume that he started from
some established method of determining the volume of a solid, and worked
backwards to other solids for which the same method was valid.

In short, Archimedes was not so modern as we are prone to imagine. He
was an ancient. His arguments about the volume of solids always began with
some concrete solid; he did not invent a solid from a method; the recognition,
evident for us, that the volume of solid is determined by its sections, was by
no means evident for him.

Thus the inquiry of the number of lost pages at the end of the Method
eventually revealed an Archimedes less modern but at the same time less sly
and more honest and serious.

9 Appendix: Archimedes’ propositions and
reconstructions

9.1 Prop. 2: Sphere

The use of the virtual balance is based on the equilibrium between sections
of figures whose volume (or area) is unknown, and corresponding sections of
the known figure. To determine the volume of a solid (or the area of a plane
figure in Prop. 1), it is necessary to carry its section to the other end of the
virtual balance, and find the section of another solid, which, in its place, is
in equilibrium with it. Both the volume and the barycenter of the second
solid must be known. In many cases, this second solid is a cylinder.

In figure 11, ABGD is a great circle of the sphere, AG and BD are two
of its diameters, perpendicular to each other. Archimedes conceives another
great circle in the sphere with diameter BD and perpendicular to the plane
of ABGD, and constructs a cone having this circle as the base and the point
A as vertex. This cone is extended to the plane through G and parallel to
the base of the cone. This cone makes a circle whose diameter is £Z. Then
a cylinder is constructed with the circle £Z as base, and the straight line
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Fig. 11: Method Prop. 2, volume of the sphere.

AG as height. Finally, a balance QG is conceived, QA being equal to AG.

If one cuts the sphere, cone and cylinder by a plane M N, perpendicular
to AG, then the sections of the sphere, the cone and the cylinder are all
circles whose diameter are CO, PR, M N, respectively.

Since
sq(C'S) +sq(PS) =sq(CS) + sq(AS) = sq(AC)
and
sq(GA) :sq(AC) =GA: AS =QA: AS
therefore

sq(GA) :sq(CS) +sq(AS) = QA : AS

The squares can be replaced by the circles having the sides of the square as
radius. Therefore,

circle M N : circle CO + circle PR = QA : AS (1)

This means that the circle CO (section of the sphere) and the circle
PR (section of the cone), taken together and carried to the point @, are in
equilibrium with the circle M N (section of the cylinder) remaining in place.
Doing the same for other parallels planes like M N, we have an equilibrium
between the solids: sphere and cone moved to the point () is in equilibrium
with the cylinder remaining in place. From this equilibrium, the volume of
sphere is easily determined.
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9.2 Volume of the hoof
9.2.1 A possible use of the virtual balance

The volume of the hoof can easily determined in substantially the same way
as the sphere (Prop. 2), though Archimedes did not take this way.

Imagine a hoof, cut from a cylinder whose base is the circle EH, by the
oblique plane through £ H and FV.

Extend HZ and HW until they meet ED and EF, extended, at points
D' and F’, respectively. Imagine a pyramid having base FD’'F’ and vertex
H, and a triangular prism D'EF’ — G'HV’. Their role corresponds to that
of the cone AEZ (fig. 11) and cylinder EZLH in Prop. 2, which treats the
sphere.

Take the barycenter of the triangle ED'F’ and HG'V', Ey and Hy re-
spectively, and extend EyHy to (Qy so that EyHy = Hp(Q)p, and imagine the
balance QyHyFEy with fulcrum Hy. The section of the hoof by any plane,
NM'Y’, perpendicular to the arm of the balance is triangle NSX (shown by
the shadowed triangle in the figure). In the case of the sphere, the section
was the circle having center N and radius NS. Instead of the sections of
the sphere, the cone and the cylinder in the case of the sphere, consider the
sections of the hoof, the pyramid and the prism cut by the plane NM'Y".
The sections are triangles NSX, NM'Y" and NM"Y" respectively, and they
are similar to each other (the section of the hoof is shadowed, and those of
the pyramid and the cylinder are shown by dashed lines in the figure).

The rest of the argument is similar to that in Prop. 2. For the circle
sections of the sphere, the cone and the cylinder, the proportion (1) was
deduced; now between the similar triangles, which are section of the hoof,
the pyramid and the cylinder, one can deduce:

triangle NM'Y" : triangle NSX + triangle NM"Y" = QH, : HyN,

This proportion means an equilibrium on the virtual balance: the trian-
gles NSX and NM"Y”, that is, the sections of the hoof and of the pyramid,
taken together and carried to Qg are in equilibrium with the triangle NM'Y”,
the section of the prism, remaining in place.’® From this equilibrium of the

30 We have imagined a balance EyQ, which passes the barycenter of each of the section
of the prism (e.g., Ny is the barycenter of the triangle NM'Y").
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sections follows the equilibrium between the solids—the hoof and the pyra-
mid carried to @) is in equilibrium with the prism remaining in place. This
equilibrium means that the hoof and the pyramid taken together are half

the prism, and it can be easily deduced that the hoof is one-sixth the prism
D'EF' — G'HV’, or two-thirds the prism DEF — GHYV .

Fig. 12: Volume of the hoof: a possible use of virtual balance.

9.2.2 Archimedes’ use of the virtual balance for the hoof: Prop.
12+13

Archimedes’ approach to the hoof, however, was completely different from the
above reconstruction. He imagines a balance HJ (fig. 13), perpendicular to
the section of the half cylinder which contains the hoof, and passing through
the center O of the section. Probably, Archimedes first saw that the ‘height’
of the hoof is proportional to the distance from the diameter of the base AC.
Indeed, if one cuts the hoof by a plane LM, perpendicular to the base and
parallel to the diameter AC of the semicircle, the section is the parallelogram
MF, whose height PR is proportional to K R. It is obvious that the section
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of the hoof (parallelogram M F), carried to point H, is in equilibrium with
the section of the semicylinder (M L) remaining in its place. This is indeed
the repeated pattern of the argument by virtual balance.

NIV .

_HE J
I
AT
N j
N

Fig. 13: Prop. 12: hoof and semicylinder.

Considering all the sections by parallel planes, the hoof moved to the
point H is in equilibrium with the semicylinder having base ABC and height
BD, left in its place. If one knew the barycenter of the semicylinder (this
is of course equivalent to the barycenter of the semicircle) the volume of the
hoof would be determined at once.

However, this was not the case, of course. Archimedes then finds another
solid, whose volume and the barycenter is known, and in equilibrium with
the semicylinder. The solid is a triangular prism (fig. 14). The semicylinder
and the prism are in equilibrium on the balance C'P whose fulcrum is the
point Q.

No attempt has been made, as far as the authors know, to explain how
Archimedes discovered the triangular prism, but it is fairly easy to find a
reasonable hypothesis. Obviously, the problem is reduced to finding a plane
figure in equilibrium with a semicircle. In fig. 15, C'P is the arm of an virtual
balance having the fulcrum at the point (). It is required to find some figure
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Fig. 14: Prop. 13: semicylinder and triangular prism in equilibrium.

on the left side of RO, which would be in equilibrium with the semicircle
OPR.

H R
B P

C: : Q p
M O

Fig. 15: Look for a shape in equilibrium with a semicircle.

Archimedes always cuts the figure by lines or planes perpendicular to the
arm of the balance, but this approach was useless in this situation, for it
would have taken him back to the hoof from which he started. Confronted
with this difficulty, his genius invented another way of cutting the figure.
Imagine that the semicircle is cut by a line SK, parallel to the arm CP of
the balance, and look for the section LX which would be in equilibrium with
SK, around the point S. If such a line LLX is found for each section SK,
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then the figure filled by all the lines LX, would be a figure in equilibrium
with the semicircle.

Let the length of LX be m and the distance of the barycenter of LX
(midpoint of LX) from S be [, Since this is in equilibrium with SK,

SK:-m=1: S—K
2
That is,
K
rec(l,m) = sq(;’ )

Now, every Greek mathematician knew that sq(SK) = rec(RS,SO) in a

circle, so that

~ sq(SK)  rec(RS,SO)
rec(l,m) = 5 = 5 (2)

Then, one might as well try assigning RS, SO and % to [ and m, so that
the equality (2) holds. There are not so many possibilities for such an assign-
ment, and the assignment [ = SO/2, m = RS for sections between R and ()
would create triangle C HQ). For the sections between ) and O, an assign-
ment symmetrical to those between R and () would create triangle C'M Q).
As a whole, triangle HM (@ is found to be in equilibrium with the semicircle
OPR. Then, considering the prism and the semicylinder having these plane
figures as base, the semicylinder is in equilibrium with the triangular prism,
so that the triangular prism is in equilibrium with the hoof, carried to the
endpoint of the balance.

The whole argument of Prop. 12+13 is very long and complicated, but
the first step of introducing the semicylinder in Prop. 12 is very natural for
someone who has become accustomed to the use of virtual balance as seen
in the other figures. The only impressive leap is found in Prop. 13, where
Archimedes cuts the figure by planes parallel to the arm of the balance,
while in the previous propositions he cut the figure by planes perpendicular
to the arm of the balance.®® Once this unusual way of cutting is found,
then it must have been easy for any Greek geometer to find a section of some
“manageable figure” in equilibrium with the section SK of the semicircle, and
to find consequently the triangle HM () (or some other appropriate figure),

31Tn our exposition above, we considered the semicircle which is the base of the semi-
cylinder, so we cut the semicircle by lines parallel to the arm of the balance.
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as we have shown. Though Heath called this argument “tour de force”, it is
rather a natural development of the approach by virtual balance.

This new way of cutting the figure by planes parallel to the arm of the
balance probably opened the way for the argument without the balance in
Prop. 14. Archimedes only had to try cutting the original hoof by the same
plane with which he cut the semicylinder. The resulting sections of the hoof
are triangles similar to each other and constructed on half chords of a circle
(we will soon see it in fig. 16). At this point he could have realized that the
determination of the volume of the hoof is identical with that of spheroids,
but for some unknown reason he did not, and instead found another won-
derful way of reducing the determination of the volume of the hoof, to the
quadrature of a parabola, one of his early findings. Rewriting the whole
argument of Prop. 14 into a rigorous demonstration by double reductio ad
absurdum must have been no more than routine work for Archimedes, who
had already written the Conoids and Spheroids.

We moderns may find at once that cutting the figure by planes perpen-
dicular to the diameter of the base gives the easiest solution, because the
cubature of a solid is finding some parallel planes which yield sections whose
area are easily integrable. So our approach begins with cutting the solid by
various parallel planes, and it is rather difficult not to find the ‘right’ way of
cutting the hoof. However, it was not possible for Archimedes to find this
section before the usual and evident application of the virtual balance (Prop.
12), and the effort to resolve the difficulty he encountered (Prop. 13).

9.2.3 The volume of the hoof by indivisibles without the balance,
and its “exhaustion” version (Prop. 14 and 15)

In this proposition, Archimedes cuts the hoof by a plane passing through N
and perpendicular to the diameter of the semicircle EZH (fig. 16). This plane
cuts, from the hoof, triangle NSX. If one considers the triangular prism
DEF — GHV circumscribed about the hoof, the same cutting plane cuts
the triangle M NY from the prism. Archimedes compares the two sections
MNY and NSX, which are two similar triangles, and shows that their ratio
MNY : NSX is reduced to a ratio of two line segments, M N : NL, where
L is the point where the cutting plane meets the parabola with vertex Z,
diameter Z K, and passing through F and H.

MNY : NSX =MN:NL
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Fig. 16: Prop. 14: “indivisible” approach to the volume of the hoof

This proportion holds for any point /V on the diameter £ H, and gathering
all the sections together, Archimedes concludes that3?

prism DEF — GHYV : hoof = parallelogram DH : parabolic segment FZ H

As the parabolic segment is two-thirds of the circumscribed parallelogram,
the hoof is also two thirds.

This argument, though not containing mechanical elements, was by no
means at the level of rigor required in Greek geometry. However, it is only
routine work to transform it into such a demonstration. One only has to
divide the diameter FH into equal parts, and consider the triangular prism
having as base the triangle NSX. Thus one can construct solids inscribed in,
and circumscribed about, the hoof consisting of triangular prisms, which dif-
fer by a magnitude smaller than any assigned magnitude. Then the rest is the
usual argument by reductio ad absurdum. This is exactly what Archimedes
did in Prop. 15.

32There are some twenty lines of text justifying this transition from the proportion of
the sections to that of “all the sections” (figures), which was illegible for Heiberg. Recent
studies of the palimpsest has restored the text and Archimedes was not developing a
naive argument by intuition, but was trying to provide a justification to this argument of
“summing up” infinite sections applying a theorem valid for the proportion of the sum of
finite number of terms. See [Netz et al. 2001-2002].
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9.3 The volume of the vault
9.3.1 By virtual balance (Rufini 16)

We present here the outline of the reconstruction of the argument by the vir-

tual balance for the volume of the vault, which can be found in [Heiberg and Zeuthen 1907,
357], [Reinach 1907, 959-960|, [Heath 1912, suppl. p. 48-51], [Rufini 1926,

170-173].33
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0
Y = W
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Fig. 17: The diagram for the sphere, reused for the vault

The outline of the argument by virtual balance is as follows. One can use
the diagram from Prop. 2, and one only has to imagine that the circle ABG D
is the section of the vault by the plane of this diagram (one of the axes of the
intersecting cylinders is BD, the other axis is through K and perpendicular
to the sheet), and that parallelogram EL and triangle AEZ are sections of
a prism (or parallelopiped) and a pyramid respectively (both having square
base). Then, the plane through M N cuts, from the vault, the square on
C'O—more precisely, the line CO joins the midpoints of the opposite sides
of the square—, from the prism the square on M N, and from the pyramid
the square on the PR. By the same argument for the sphere in Prop. 2, the

33 These reconstructions are “Prop. 15”7 except in [Rufini 1926] which assigns number
16, because the current Prop. 8 did not appear in Heiberg’s first report of the discovery
of the palimpsest [Heiberg 1907], and the proposition numbers assigned to the subsequent
propositions were less by one (see also Appendix 2). The proposition numbers we use are
those in [Heiberg 1910-15].
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square on C'O and on PR, carried to the point ) are in equilibrium with
the square on M N, remaining in its place. The same thing being done for
other sections, it turns out that the vault and the pyramid together, carried
to the other end of the balance so that their center of gravity is the point @,
are in equilibrium with the prism FH remaining in place. So (the vault) +
(pyramid AEZ) is half the prism FH; and since the pyramid AEZ is one
third the prism FH, the vault is one-sixth of the prism FH. And the cube
F'W is one-fourth the prism, so that the vault is two-thirds of the cube F'W,
in which it is inscribed.

9.3.2 Volume of the vault by indivisibles (Sato 17)

The volume of the vault can be determined in much the same way as Prop.
14 where Archimedes treats the hoof.

Fig. 18: The volume of the vault by indivisibles

The reconstructed argument can best be understood by adding some lines
to the hoof (fig. 16 and 18). Simply imagine the hoof which is cut from a
cylinder by the plane which makes half a right angle to the plane of the base
circle, so that ED = DF (fig. 16) . Then construct a cube in which the
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vault is inscribed (Fig. 18); one of the two cylinders is the cylinder of the
hoof, the other (not drawn in the figure) has the axis ZKZ'. The section of
the intersection by the same plane trough N which cuts the triangle NSX
from the hoof, cuts a square from the vault. This square is hatched in figure
18, and is obviously eight times the triangle NSX. The same cutting plane
cuts from the circumscribed cube a square equal to the square of the surface
of the cube. Then, just as in the case of the hoof, the following proportion
holds

(section of the cube) : (section of the intersection) = MN : NL

and it can be shown that the vault is two-thirds of the circumscribed cube.

10 Appendix 2: Reconstruction of the quires
containing the Method

The diagram of this appendix shows all the folia containing the Method,
with the reconstruction of original quires. The following are legenda and
some comments.

1. The horizontal lines in each page show Archimedean text, while the
vertical lines are text of the prayer book. However, these lines do not
exactly correspond to the text of each page. The space occupied by the
text and the number of lines in one page are different from one page
to another. However, the same image (36 lines for Archimedes’ text) is
mechanically reproduced for all the pages in this diagram.

2. The lower half of A23 had already been lost when Heiberg consulted
the palimpsest. One folium is lost between A26 and A27 in the second
quire, and all the folia of the third quire are lost, except 165-168 (the
central part of A29-A30). Very probably, they were simply not used
in the palimpsest. In this diagram, they appear without the horizontal
lines showing the text.

3. After Heiberg consulted the palimpsest, the recto page of A16 was
covered by a fake illustration, and the upper half of A21 and A23 (recto
and verso) were lost. These pages are indicated by different hatched
lines. We have Heiberg’s readings of these pages, which can no longer
be examined.
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4. The spaces occupied by each proposition are divided by straight lines,
which are dashed when the border between propositions is not certain.

5. Prop. 8 consists only of a short enunciation without further argu-
ment, and belongs to a folium read by Heiberg but now lost. Judging
from Heiberg’s text, which shows the beginning of every line in the
manuscript, Prop. 8 consists of eight full lines followed by seven very
short lines. Very probably, the diagram of the Prop. 7 appeared beside
the shortened lines of the text of Prop. 8.3* This means that Prop.
8 was not meant as an independent proposition but a mere corollary.
Thus we have put the number of the Prop. 8 in parenthesis.

34 A similar arrangement of diagrams can be found at the ends of Prop. 3 and Prop. 4,
for which the border lines between the following proposition goes through the middle of a
column.
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=] covered by fake illustration X lost after Heiberg
EX] lost before Heiberg (existed in the palimpsest)

I not included in the palimpsest

Al14 A15 Al16 A17 A18 A19 A20 A21
169r-164v ~ 461-43v 57r-64v 661-71v 65r-72v 58r-63v 44v-451 170r-163v

recto

verso

169v-164r  46v-43r 57v-64r 66v-T1r l 65v-T2r 58v-63r 44r-45v  170v-163r

A22 A23 A24 A25 A26
157r-160v ~ 104v- —  166r-167v 48r-41v 47r-42v

A27 A28
110v-105r  158r-159v

recto

verso

157v-160r 104r- —  166v-167r 110r-105v  158v-159r
_ A29 — A30 -
165v — 168v

recto

N l l
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