Carissim*,
a nome dell’Osservatorio Dottorandi dell’UMI, vi scriviamo per comunicare una Call for Nominations per la EMS Young Academy: una accademia per giovani matematici e matematiche creata dal Council della EMS.
Saranno selezionati/e 30 giovani matematici/matematiche che faranno parte della EMYA per 4 anni. L’EMYA organizzerà e suggerirà miglioramenti per l’EMS (e.g., research plans, workshops, scuole, cambi organizzativi, presentazioni web, pubblicazioni, etc…). Tutte le informazioni si trovano alla pagina web: https://euromathsoc.org/EMYA <https://euromathsoc.org/EMYA>.
L’UMI ha la possibilità di nominare 2 giovani matematici/matematiche che verranno scelti/e durante l’incontro di Settembre dell'UP.
Al fine di aiutare il lavoro dell’UP, vi invitiamo a comunicarci al più un nominativo per Collegio corredato di CV e lista pubblicazioni che rientri nei termini (3o anno oppure PhD da meno di 5 anni) entro lunedì 5 settembre.
Le comunicazioni dovranno essere mandate alla mail della Coordinatrice dell’Osservatorio Dottorandi: Anna Maria Fino (annamaria.fino(a)unito.it <mailto:annamaria.fino@unito.it>) oppure in risposta a questa mail.
Cordialmente,
l’Osservatorio Dottorandi dell’UMI,
Anna Maria Fino (coordinatrice), Martino Bardi, Claudia Ceci, Angelo Lopez, Alessandro Oneto
Cari Coordinatori, Care Coordinatrici,
al fine di tenere aggiornata la pagina web del Sito dell’UMI sui Dottorati
in Matematica italiani
https://umi.dm.unibo.it/comitati/gruppo-di-lavoro-per-il-coordinamento-dei-…
e la pagina web dedicata ai bandi per il 39esimo ciclo
https://umi.dm.unibo.it/comitati/gruppo-di-lavoro-per-il-coordinamento-dei-…
,
l’Osservatorio Dottorandi chiede la vostra collaborazione attraverso la
seguente google form:
*https://forms.gle/nBRic7dRSUqDE9Pi6 <https://forms.gle/nBRic7dRSUqDE9Pi6> *
Nella Google Form si chiede di indicare per ciascun dottorato attivo:
- Sede
- Denominazione
- Coordinatore/Coordinatrice
- Pagina Web del Dottorato
- Link al Regolamento
Successivamente, è disponibile una scelta multipla per permetterci di
seguire l’avanzamento dei lavori per le ammissioni del 39esimo ciclo:
- in caso di Bando Chiuso, si conclude la form;
- in caso di Bando Aperto, si chiede: data di scadenza, link al bando,
numero di posti;
- in caso di Risultati Valutazione Titoli, si chiede: link alla
valutazione, data orali;
- in caso di Graduatoria Finale, si chiede: link alla graduatoria.
Speriamo che questo possa semplificare le comunicazioni di tali
informazioni, in modo tale da avere informazioni aggiornate.
Un cordiale saluto,
Alessandro Oneto, a nome dell’Osservatorio Dottorandi dell’UMI
--
Alessandro Oneto
*Dipartimento di Matematica, Università di Trento*
https://sites.google.com/view/alessandrooneto/home
Cari Colleghi Coordinatori, vi giro l'avviso di questa scuola estiva che
abbiamo organizzato e che potrebbe essere di interesse per alcuni dei
vostri dottorandi.
Cordiali saluti
Valter Moretti
------------------------------------------------------------------
Prof. Valter Moretti, Ph.D
Head of the Doctoral School in Mathematics
Department of Mathematics,
University of Trento,
via Sommarive 14
38123 Povo (Trento)
https://moretti.maths.unitn.it/home.html
---------------------------------------------------------------------------
http://datascience.maths.unitn.it/events/qml2023/
Mathematical foundations of Quantum Machine Learning
<http://datascience.maths.unitn.it/events/qml2023/>
http://datascience.maths.unitn.it/events/qml2023/
[image: Department of Mathematics, University of Trento]
<https://www.maths.unitn.it/>
A Summer School promoted by the Department of Mathematics of the University
of Trento also funded by Q@TN and TIFPA-INFN
When: *10-14 July 2023* Where: University of Trento
- Povo 1 building at polo F. Ferrari, Room A102
- Via Sommarive 5, 38123 Povo - Trento
*The school will be held exclusively in presence in Trento. In case of
impediments due to the COVID-19 pandemic, the school will run remotely on
the same dates.*
Outline
Quantum Machine Learning is a rapidly emerging research area where the
power of quantum computing is applied to machine learning tasks and
represents one of the most promising applications of fault-tolerant quantum
computers. Despite the large number of recent achievements in this area,
several challenges are still present. Fundamental questions, such as the
effective uses of quantum algorithms and the proof of quantum supremacy in
this field, need to be addressed. To this end, effective mathematical
techniques play a fundamental role.
The aim of the School is to present in an accessible way to a wide audience
the mathematical theory underlying Quantum Machine Learning, through three
mini courses held by researchers active in this field. Moreover, the School
aims to provide an opportunity for different communities to meet up,
fostering the interactions, allowing exchanges of ideas and methods and
contributing to the diffusion of open problems.
Registration
- The School is meant mainly for master and graduate students, but also
for postdocs, young as well as senior researchers interested in approaching
this blooming research field.
- The ideal participant has a good background in Mathematics,
Probability, Statistics or Data Science. However the application is open to
everyone.
- The course will be delivered in English.
- Registration fees
- Master and PhD students: 50euro
- Academics: 150euro
- Non academics: 200euro
- Registration includes coffee breaks and lunches.
-
Attendance is limited to *60 people*. Registration is compulsory. To
register follow this link
<https://webapps.unitn.it/form/it/Web/Application/convegni/MFQML2023>
https://webapps.unitn.it/form/it/Web/Application/convegni/MFQML2023
-
you will be asked some information about yourself and standard
documentation. To receive full consideration please submit your application
no later than *1 June 2023*.
- For further information, please contact datascience.maths(a)unitn.it
Lectures
[image: Giacomo De Palma]
Giacomo De Palma
*(University of Bologna)*
Personal website <https://www.unibo.it/sitoweb/giacomo.depalma/en> Bio
Giacomo De Palma is Associate Professor of Mathematical Physics in the
Department of Mathematics of the University of Bologna (Italy). He received
his PhD from Scuola Normale Superiore (Pisa, Italy). He was postdoc and
Marie-Curie Fellow at the University of Copenhagen (Denmark), postdoc at
MIT (USA) and tenure-track Assistant Professor at Scuola Normale Superiore.
Giacomo De Palma's main research interests are the mathematical aspects of
quantum information and quantum computing. His current research aims to
develop new quantum algorithms for machine learning and to improve the
theoretical understanding of the capabilities of quantum computers. To
achieve these goals, he is applying insights from a quantum generalization
of optimal mass transport that he has proposed. He has published in
peer-reviewed journals including Communications in Mathematical Physics,
Nature Photonics, Physical Review Letters, PRX Quantum and IEEE
Transactions on Information Theory and in peer-reviewed proceedings
including the proceedings of the Conference on Neural Information
Processing Systems and of the International Conference on Machine Learning.
[image: Dario Trevisan]
Dario Trevisan
*(University of Pisa)*
Personal website <http://people.dm.unipi.it/trevisan/index_EN.html> Bio
Dario Trevisan was born in the Province of Venice, Italy, in 1987. He
received the M.S. degree in mathematics from the University of Pisa, in
2011, and the Ph.D. degree in mathematics from the Scuola Normale
Superiore, Pisa, Italy, in 2014. He is currently Associate Professor at the
University of Pisa in Probability and Mathematical Statistics. His current
research focuses on applications of Stochastic Analysis and Optimal
Transportation to Quantum Information Theory and Machine Learning. He is
co-author of more than 30 research articles. In 2021, he was awarded the
Guido Fubini Prize for his contributions to Probability in Analysis and
Mathematical Physics.
[image: Leonardo Banchi]
Leonardo Banchi
*(University of Firenze)*
Personal website <https://leonardobanchi.github.io/> Bio Leonardo Banchi is
an Associate Professor of Theoretical Physics of Matter at the Department
of Physics and Astronomy of the University of Florence (Firenze). He
received his PhD in Florence and worked as a post-doc at ISI foundation
(Torino), University College London and Imperial College London (UK). He
also worked as a scientist in the industry, at Xanadu Inc. (Toronto,
Canada). Leonardo Banchi's main research interests are quantum algorithms
for simulating many-body physics and machine learning, quantum information
and communication theory. He currently works on formal and theoretical
aspects of quantum machine learning, such as classifying the complexity of
learning quantum properties of physical objects directly from data. He has
published in several journals including Nature (Reviews) Physics , Nature
Computational Science, Nature Communications, npj Quantum Information,
Quantum, PRX, PRX Quantum and Physical Review Letters. Schedule To be
announced Accomodation
In terms of accommodation in Trento during the time of the summer school,
you may want to consider:
- Agritur Ponte Alto <https://www.agriturpontealto.it/>
info(a)agriturpontealto.it
- Camere Ester Povo <https://www.estercamere.it/>camere.ester(a)gmail.com
- Hotel America <https://www.hotelamerica.it/en/> info(a)hotelamerica.it
- Hotel Accademia <https://www.accademiahotel.it/> info(a)accademiahotel.it
- Grand Hotel Trento <https://www.grandhoteltrento.com/>
reservation(a)grandhoteltrento.com
- NHHotel <https://www.nh-hotels.it/hotel/nh-trento>
nhtrento(a)nh-hotels.com
- Hotel Everest <https://www.hoteleverest.it/> info(a)hoteleverest.it
- Villa Madruzzo <https://www.villamadruzzo.com/> info(a)villamadruzzo.it
Our Sponsors
- [image: Department of Mathematics, University of Trento]
<https://www.maths.unitn.it/>
- [image: Quantum Science and Technology in Trento]
<https://quantumtrento.eu/>
- [image: (TIFPA - Trento Institute for Fundamental Physics and
Applications] <https://www.tifpa.infn.it/>
Organizers
- Sonia Mazzucchi (University of Trento, TIFPA and Q@TN)
sonia.mazzucchi(a)unitn.it
- Claudio Agostinelli (University of Trento) claudio.agostinelli(a)unitn.it
- Gian Paolo Leonardi (University of Trento) gianpaolo.leonardi(a)unitn.it
- Valer Moretti (University of Trento, TIFPA and Q@TN)
valter.moretti(a)unitn.it
- daTascieNceTN <https://telegram.me/daTascieNceTN>
daTa scieNce is the web site of the students in Mathematics for daTa
scieNce at the Departement of Mathematics, University of Trento
Copyright 2017 daTa scieNce team - These web pages used the Creative
Commons BY-NC 2.0 <http://creativecommons.org/licenses/by-nc/2.0/> license.
--
Prof. Valter Moretti, PhD
Head of the Doctoral School in Mathematics
Department of Mathematics - Trento
Universityhttps://moretti.maths.unitn.it/home.html
Cari Coordinatori, Care Coordinatrici,
scriviamo per pubblicizzare una selezione bandita dall'UMI per Visiting Students in Matematica per l’anno 2023/24. L’iniziativa riguarda studenti di dottorato di alto profilo scientifico, presso un’istituzione italiana, che abbiano conseguito il titolo di Laurea Magistrale o equivalente. L’UMI si impegna a selezionare un massimo di due studenti e ad assegnare un contributo finanziario di 2500 euro ciascuno, al lordo di ogni eventuale ritenuta di legge.
Scandeza: 15 aprile 2023.
I dettagli del bando e le modalità di domanda si possono trovare al seguente link: https://umi.dm.unibo.it/2023/02/28/grants-per-studenti-di-dottorato-2/
Cordialmente,
l'Osservatorio Dottoranti
Sent from Mailspring (https://getmailspring.com/), the best free email app for work