*Avviso Seminario di Matematica*
Data: Monday, September 26, 2022
Ora: 16:15 - 17:15
Luogo: Aula Volterra, Normale
Speaker: Anna Weller
University of Cologne
Titolo: *A spectral Galerkin method for the solution of reaction-diffusion equations on metric graphs*
Abstract:
Weinvestigateaspectralsolutionapproachforreaction-diffusionequationsongraphs
interpretedastopologicalspace(metricgraphs).Ofspecialinterestisthenumerical
computationofeigenfunctionsofthenegativesecondorderderivativeactingoneach
edge.Remarkably,itispossibletogiveanexplicitcharacterizationoftheseeigenfunctions
andcorrespondingeigenvalues.Moreover,forequilateralgraphs,wewillshow
howtoefficientlycomputeanarbitrarylowerpartofthespectrumusingaveryuseful
relationshiptothegraphLaplacianmatrixoftheunderlyingcombinatorialgraph.
Finally,wecanusethebasisofeigenfunctionsinaGalerkinapproachtosolvevarious
PDEsonmetricgraphs,wereweherefocusonreaction-diffusionequations.This
problemismotivatedbyarecentcollaborationwiththeInstituteofGeophysicsand
MeteorologyoftheUniversityofCologneonthemodelingofproteindistributionin
Alzheimer’sdiseasetogetherwiththeUniversityHospitalCologne1.Partofmynumerical
resultsarejointworkwithProf.Dr.MarkAinsworth(BrownUniversity)and
withChong-SonDroege(UniversityofCologne).
References
[1]M.Ainsworth,A.Weller,AspectralGalerkinmethodforthesolutionofpartialdifferential
equationsonmetricgraphs,inpreparation.
[2]M.Ainsworth,A.Weller,AspectralGalerkinmethodforthesolutionofreaction-diffusion
equationsonmetricgraphs,OberwolfachReports,WorkshopReport36,2021.
[3]A.Kunoth,A.Weller,T.Yilmaz,Acomputationalbrainspheremodelforthesimulationof
Alzheimer’sDisease.SnapshotsofmodernmathematicsfromOberwolfach,inpreparation.
[4]A.Weller,G.N.Bischof,P.Schl̈uter,N.Richter,J.Dronse,̈O.Onur,J.Kukolja,B.Neu-
maier,A.Kunoth,Y.Shao,T.vanEimeren,A.Drzezga,Findingnewcommunities:A
principleofneuronalnetworkreorganizationinAlzheimersdisease.BrainConnectivity,
11(3):225-238,2021.DOI:10.1089/brain.2020.0889
ThisworkwassupportedbytheExcellenceInitiativeoftheUniversityofCologne