Il Prof. Jan Swart [ Institute of Information Theory and Automation - Czech
Republic ] sarà ospite del Dipartimento di Informatica dell’Università di
Verona [ Strada le Grazie, 15 - Vr ] nei giorni dal 20 al 24 Ottobre 2014 e
terrà un mini corso [8 ore] intitolato
” *Interacting Particle Systems with Applications in Finance* “
ed articolato in tre lezioni, che si terranno nell'edificio Ca' Vignal 2 -
Aula M, nei giorni
- Lunedì 20 Ottobre [ 13:30-16:30 ]
- Mercoledì 22 Ottobre [ 15:30-18:30 ]
- Giovedì 24 Ottobre [ 13:30-15:30 ]
con il seguente programma
Interacting particle systems are mathematical models for systems consisting
of
a large number of components that interact with each other in a random
way. While the behavior of the individual components is governed by simple
rules, the behavior of the whole system can be quite complicated due to the
interaction. Often, one observes a phase transition between a regime of weak
interaction where the components behave more or less as if they were
independent and a regime of strong interaction where collective phenomena
such
as multiple stable states occur. Particle systems have been used in finance
to
model phenomena such as collective decision making or contagion of credit
risk, and also in fields like mathematical physics, population biology, and
sociology to model lots of other phenomena. In these lectures, I will
demonstrate on the basis of examples some of the basic mathematical tools
for
analyzing interacting particle systems.
*On Monday*, we will look at a number of different interacting particle
systems
that will serve as motivating examples during the lectures, such as
stochastic
Ising and Potts models, (biased) voter models, systems of branching and
coalescing particles, and more. We will analyze the mean-field versions of
these models and use numerical simulations to look at phenomena for spatial
models like multiple invariant laws, first and second order phase
transitions
and critical exponents. We will make a start with the rigorous theory by
looking at graphical representations and use these to give sufficient
conditions for uniqueness of the invariant law.
*On Wednesday*, the main focus will be on the regime where multiple
invariant
laws occur. The main techniques on this day are duality and comparison with
oriented percolation, which are especially suitable for variations
of the voter model and branching and coalescing particle systems.
*On Thursday*, we will look at the Ising and Potts models to which the
techiques
of Wednesday do not apply but which are reversible with Gibbs invariant
law. Through the random cluster representation, percolation again appears as
the unifying principle behind collective behavior.
Per informazioni contattare: luca.dipersio@univr <luca.dipersio(a)univr.it>
__
Luca Di Persio - PhD
assistant professor of
Probability and Mathematical Finance
Dept. Informatics University of Verona
strada le Grazie 15 - 37134 Verona - Italy
Tel : +39 045 802 7968
Dept. Math University of Trento
V. Sommarive, 14 - 38123 Povo - Italy
Tel : +39 0461 281686