-------- Forwarded Message -------- Subject: [Utenti] [Settimanale] avviso seminario di Matematica prof. Giuseppe Savaré (09.05.2017) Date: Fri, 5 May 2017 12:18:32 +0200 From: Valeria Giuliani valeria.giuliani@sns.it To: professori.sci@sns.it, professori.contratto.sci professori.contratto.sci@sns.it, ricercatori.sci@sns.it, ricercatori.td.sci@sns.it, Borsisti borsisti@sns.it, assegnisti.sci@sns.it, Perfezionandi Scienze phd.sci@sns.it, phd.extra.sci phd.extra.sci@sns.it, Studenti Scienze allievi.sci@sns.it, allievi.extra.sci allievi.extra.sci@sns.it CC: Sito SNS sitosns@sns.it, Portineria Carovana portineria.carovana@sns.it, Classi classi@sns.it
SEMINARIO DI MATEMATICA
Martedì 16 maggio 2017
ore 15:00
_Scuola Normale Superiore_
Pisa
Aula Fermi
*_ _*
* **Giuseppe Savaré***
/(Università di Pavia)/
*/ /*
terrà un seminario dal titolo:
*“**Optimal transport in competition with reaction**”***
* *
*Abstract:*
We discuss a new notion of distance on the space of finite and nonnegative measures,which can be seen as an inf-convolution of the well-known Kantorovich-Wasserstein and Hellinger distances. Starting from a dynamic approach (inspired to Benamou-Brenier), we will discuss various equivalent formulations, their geometric properties and their link with optimal transport problems.
Tutti gli interessati sono invitati a partecipare.
Classe di Scienze Matematiche e Naturali
Valeria Giuliani Scuola Normale Superiore Servizio alla Didattica e Allievi tel. 050 509260 Piazza dei Cavalieri, 7 56126 Pisa E-mail: valeria.giuliani@sns.it mailto:valeria.giuliani@sns.it E-mail: classi@sns.it mailto:classi@sns.it
Annuncio Seminario di Probabilita, Pisa,
Universita' di Pisa
Martedi' 16 maggio, ore 11:15, Aula Seminari
Seminario di Probabilita’
SPEAKER: Dejun Luo (Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing)
TITLE: Constantin and Iyer's representation formula for the Navier--Stokes equations on manifolds
ABSTRACT: In this talk, we will present a probabilistic representation formula for the Navier-Stokes equations on compact Riemannian manifolds. Such a formula has been provided by Constantin and Iyer in the flat case. On a Riemannian manifold, there are several different choices of Laplacian operators acting on vector fields. We shall use the de Rham-Hodge Laplacian operator which seems more relevant to the probabilistic setting, and adopt Elworthy-Le Jan-Li's idea to decompose it as a sum of the square of Lie derivatives. This is a joint work with Shizan Fang.
Tutti gli interessati sono invitati a partecipare. Per informazioni scrivere a carina.geldhauser@dm.unipi.it