Carissimi, stiamo cercando di organizzare in Italia, sulla falsariga del M. Kac Seminar in Olanda, una serie di incontri di probabilita` e delle sue applicazioni alla Fisica, Biologia e Scienze sociali, per stimolare lo scambio di idee e offrire ai piu` giovani l'opportunita` di venire a contatto con un ampio panorama di temi di ricerca.
E` con grande gioia che vi comunico che il primo di questi eventi si terra` venerdì 26 Maggio 2017 a Firenze, in un'aula universitaria vicino alla stazione di S. Maria Novella. Sara` un'occasione per goderci una giornata scientifica insieme e per esplorare le possibilita` e le modalita` piu` opportune per ripetere questo tipo di incontri. Di seguito trovate i dettagli della giornata del 26 Maggio, che vedra` come oratori R. Fernandez (University of Utrecht, Olanda) e R. Morris (IMPA Instituto Nacional de Matemática Pura e Aplicada Rio de Janeiro, Brazil).
A SPRING DAY IN PROBABILITY AND STATISTICAL PHYSICS
University of Florence Friday 26 May 2017
Lecturers: R. Fernandez (Utrecht) and R. Morris (IMPA).
Location: Aula Magna di Via S. Gallo 10, Firenze
Prof. Roberto Fernandez Title: Signal description: process or Gibbs?
Abstract: The distribution of signals such as spike trains is naturally modeled through stochastic processes where the probability of future states depend on the pattern of past spikes. Mathematically, this corresponds to distributions *conditioned on the past*. From a signal-theoretic point of view, however, one could wonder whether a more efficient description could be obtained through the simultaneous conditioning of past *and* future. Furthermore, such a formalism could be appropriate when discussing string without a particular "time" order, such as the distribution of DNA nucleotides, or even issues related to anticipation and prediction in neuroscience. On the mathematical level this double conditioning would correspond to a Gibbsian description analogous to the one adopted in statistical mechanics. In this talk I will introduce and contrast both approaches ---process and Gibbsian based--- reviewing existing results on scope and limitations of them.
Prof. Robert Morris Title: Monotone cellular automata
Abstract: Cellular automata are interacting particle systems whose update rules are local and homogeneous. Since their introduction by von Neumann almost 50 years ago, many particular such systems have been investigated, but no general theory has been developed for their study, and for many simple examples surprisingly little is known. Understanding their (typical) global behaviour is an important and challenging problem in statistical physics, probability theory and combinatorics. In this talk I will outline some recent progress in understanding the behaviour of a particular (large) family of monotone cellular automata -- those which can naturally be embedded in d-dimensional space -- with random initial conditions. For example, in the case where a site updates (from inactive to active) if at least r of its neighbours are already active, these models are known as bootstrap percolation, and have been extensively studied for various specific underlying graphs. Apart from their inherent mathematical interest, the study of these processes is motivated by their close connection to models in statistical physics, and I will discuss some applications to a family of models of the liquid-glass transition known as kinetically constrained spin models.
Program: 11.00-11.45 Introductory lecture: R. Fernandez 11.45-12.00 Break 12.00-12.45 Seminar: R. Fernandez 13.00-14.30 Lunch 14.30-15.15 Introductory lecture: R. Morris 15.15-15.30 Break 15.30-16.15 Seminar: R. Morris
Note pratiche: 1) E` importante prenotare il biglietto del treno il piu` presto possibile per poter usufruire di sconti!!!! 2) Stiamo prenotando un ristorante con un paio di menu fissi che possa ospitarci, ma ho bisogno del numero di persone che vogliono mangiare insieme. A coloro che fossero interessati chiedo di mandare un email a francescaromana.nardi@unifi.it Resta fermo il fatto che saremo in pieno centro di Firenze, quindi ci sono moltissime altre possibilita` per mangiare se preferite regolarvi indipendentemente.
Organizers: F. Caravenna N. Cancrini E.N.M. Cirillo P. Dai Pra A. De Masi D. Fanelli F. Flandoli C. Giardina` R. Livi F. Martinelli I.G. Minelli F.R. Nardi E. Presutti B. Scoppola E. Scoppola
Vi aspettiamo, Francesca R. Nardi
Dipartimento di Matematica e Informatica Università degli Studi di Firenze Viale Morgagni 67, Firenze, Italy
Vogliamo ricordarvi che Venerdi` 26 Maggio a Firenze ci sara`: A SPRING DAY IN PROBABILITY AND STATISTICAL PHYSICS vi ricordiamo il programma con link alle pagine web degli oratori per maggiore informazione.
Nota pratica: Stiamo prenotando un ristorante con un paio di menu fissi che possa ospitarci, ma ho bisogno del numero di persone che vogliono mangiare insieme. A coloro che fossero interessati (e che non lo hanno gia` fatto) chiedo di mandare un email a francescaromana.nardi@unifi.it Resta fermo il fatto che saremo in pieno centro di Firenze, quindi ci sono moltissime altre possibilita` per mangiare se preferite regolarvi indipendentemente.
A SPRING DAY IN PROBABILITY AND STATISTICAL PHYSICS
University of Florence Friday 26 May 2017
Lecturers: R. Fernandez (Utrecht) and R. Morris (IMPA).
Location: Aula Magna di Via S. Gallo 10, Firenze
Program: 11.00-11.45 Introductory lecture: R. Fernandez 11.45-12.00 Break 12.00-12.45 Seminar: R. Fernandez 13.00-14.30 Lunch 14.30-15.15 Introductory lecture: R. Morris 15.15-15.30 Break 15.30-16.15 Seminar: R. Morris
Prof. Roberto Fernandez Title: Signal description: process or Gibbs?
Abstract: The distribution of signals such as spike trains is naturally modeled through stochastic processes where the probability of future states depend on the pattern of past spikes. Mathematically, this corresponds to distributions *conditioned on the past*. From a signal-theoretic point of view, however, one could wonder whether a more efficient description could be obtained through the simultaneous conditioning of past *and* future. Furthermore, such a formalism could be appropriate when discussing string without a particular "time" order, such as the distribution of DNA nucleotides, or even issues related to anticipation and prediction in neuroscience. On the mathematical level this double conditioning would correspond to a Gibbsian description analogous to the one adopted in statistical mechanics. In this talk I will introduce and contrast both approaches ---process and Gibbsian based--- reviewing existing results on scope and limitations of them.
https://www.uu.nl/staff/RFernandez http://www.staff.science.uu.nl/~ferna107/
Prof. Robert Morris Title: Monotone cellular automata
Abstract: Cellular automata are interacting particle systems whose update rules are local and homogeneous. Since their introduction by von Neumann almost 50 years ago, many particular such systems have been investigated, but no general theory has been developed for their study, and for many simple examples surprisingly little is known. Understanding their (typical) global behaviour is an important and challenging problem in statistical physics, probability theory and combinatorics. In this talk I will outline some recent progress in understanding the behaviour of a particular (large) family of monotone cellular automata -- those which can naturally be embedded in d-dimensional space -- with random initial conditions. For example, in the case where a site updates (from inactive to active) if at least r of its neighbours are already active, these models are known as bootstrap percolation, and have been extensively studied for various specific underlying graphs. Apart from their inherent mathematical interest, the study of these processes is motivated by their close connection to models in statistical physics, and I will discuss some applications to a family of models of the liquid-glass transition known as kinetically constrained spin models.
https://en.wikipedia.org/wiki/Robert_Morris_(mathematician) http://w3.impa.br/~rob/
Organizers: F. Caravenna N. Cancrini E.N.M. Cirillo P. Dai Pra A. De Masi D. Fanelli F. Flandoli C. Giardina` R. Livi F. Martinelli I.G. Minelli F.R. Nardi E. Presutti B. Scoppola E. Scoppola
Vi aspettiamo, Francesca R. Nardi
Dipartimento di Matematica e Informatica Università degli Studi di Firenze Viale Morgagni 67, Firenze, Italy
Carissimi, vi scrivo per annunciare che il 13 Febbraio 2018 alle ore 15.00 ci sara` il Colloquium di Matematica in `Probability and Statisical Physics'.
Il seminario si terra` al Dipartimento di matematica e informatica `Ulisse Dini' Viale Morgagni 65 Aula Anfiteatro.
Speaker: Herbert Spohn, Zentrum Mathematik, TU Munchen (Dannie Heineman Prize for Mathematical Physics)
Titolo: Interacting diffusions in the Kardar-Parisi-Zhang universality class
Abstract: When spatially two phases coexist, usually they are separated by a sharp front, called the interface. For a two-dimensional bulk, the interface is a line. Its dynamics has deterministic and random contributions. In 1986 M. Kardar, G. Parisi and Y.-C. Zhang wrote down a stochastic partial differential equation, which appears to be a good approximation in case a stable phase is in contact with a metastable one. As discovered over the last decade the KPZ equation has a surprisingly rich underlying mathematical structure. In my talk I will discuss some aspects, in particular the link to random matrix theory, random tilings, and stochastic particle systems. One goal will be to explain the connection between the KPZ equation and interacting diffusions.
Il colloquium e` stato organizzato in collaborazione con Filippo Colomo (INFN, Sezione di Firenze & Universita` di Firenze).
Vi aspettiamo Francesca R. Nardi
Dipartimento di Matematica e Informatica Università degli Studi di Firenze Viale Morgagni 67, Firenze, Italy