Annuncment of Ph.D. Course
MATHEMATICAL ASPECTS OF QUANTUM INFORMATION THEORY
Prof. Dario Trevisan Dates of the lectures: Mo 23/01, Fr 27/01, Fr 03/02, Th. 9/02, Mo 13/02, Fr 17/02 Timetable: 11:00 - 13:000 Location: Aula B. Dipartimento di Matematica, Universita' di Roma La Sapienza
Topics: 1. Principles of QM: pure and mixed states, observables, tensor products and entanglement. 2. Examples: qudits, spin chains, Gaussian systems. 3. Open quantum systems: CPTP maps, quantum Markov semigroups and their generators. 4. Distances between quantum states: trace distance, fidelity, quantum optimal transport. 5. Quantum entropy and its properties. A quantum channel coding theorem.
Bibliography: - Nielsen, M.A. and Chuang, I.L., Quantum Computation and Quantum Information: 10th Anniversary Edition, Cambridge University Press, 2010 - Naaijkens, Pieter. Quantum spin systems on infinite lattices. eScholarship, University of California, 2013.
Best Regards,
Lorenzo Bertini
Dipartimento di Matematica Universita' di Roma La Sapienza | Tel: +39 - 06 4991 4974 P.le A. Moro 2, 00185 Roma | E-mail: bertini@mat.uniroma1.it Italy
Dear Collegues, the Ph.D. course by Dario Trevisan
MATHEMATICAL ASPECTS OF QUANTUM INFORMATION THEORY
will be streamed online at the address
meet.google.com/odo-neda-mdq
The first lecture is scheduled on Monday 23/01, 11:00 - 13:00
Best Regards,
Lorenzo Bertini
Dipartimento di Matematica Universita' di Roma La Sapienza | Tel: +39 - 06 4991 4974 P.le A. Moro 2, 00185 Roma | E-mail: bertini@mat.uniroma1.it Italy
Avviso di Seminario
Il 12.3.23 alle ore 14:00 presso la Sala di Consiglio del Dipartimento di Matematica, Università di Roma `La Sapienza'
Claudio Landim
terra' il seminario "\Gamma-expansion of the level two large deviations rate functionals"
Abstract We present a general method, based on tools used to prove the metastable behaviour of Markov chains, to derive a full expansion of its level two large deviations rate functional, expressing it as $I_n = I^{(0)} ,+, \sum_{1\le p\le \mf q} (1/\theta^{(p)}_n) , I^{(p)}$, where $I^{(p)}$ represent rate functionals independent of $n$ and $\theta^{(p)}_n$ sequences such that $\theta^{(1)}_n \to\infty$, $\theta^{(p)}_n / \theta^{(p+1)}_n \to 0$ for $1\le p< \mf q$. The speed $\theta^{(p)}_n$ corresponds to the time-scale at which the Markov chains exhibits a metastable behavior, and the $I^{(p-1)}$ zero-level sets to the metastable states.
Gli interessati sono invitati a partecipare.
Lorenzo Bertini
Dipartimento di Matematica Universita' di Roma La Sapienza | Tel: +39 - 06 4991 4974 P.le A. Moro 2, 00185 Roma | E-mail: bertini@mat.uniroma1.it Italy
Il seminario annunciato avra' luogo martedi' 14.3 e non, come erroneamente scritto nel messaggio precedente, il 12.3 (che e' peraltro domenica). Mi scuso per l'errore ed il doppio messaggio.
Lorenzo Bertini
Dipartimento di Matematica Universita' di Roma La Sapienza | Tel: +39 - 06 4991 4974 P.le A. Moro 2, 00185 Roma | E-mail: bertini@mat.uniroma1.it Italy