********************************************************************* SEMINARI DI PROBABILITA' E STATISTICA MATEMATICA DIPARTIMENTO DI MATEMATICA "G. PEANO" UNIVERSITA' DEGLI STUDI DI TORINO *********************************************************************
Martedì 17 Aprile 2018 alle ore 15:00 in Aula Marro presso il Dipartimento di Matematica "G. Peano" dell'Università degli Studi di Torino, Via Carlo Alberto 10,
Il Prof. *VASSILI KOLOKOLTSOV*
terrà un seminario dal titolo
*Recent developments in probabilistic and analytic methods for fractional differential equations *
Abstract:
We shall discuss recent achievements in solving fractional differential equations and their extensions arising from generalized fractional calculus. Probabilistic techniques will be derived from the notion of Markov processes interrupted on the attempt to cross the boundary. Analytic techniques will cover generalized operator-valued Mittag-Leffler functions and chronological Feynman-Kac formulas.
Tutti gli interessati sono invitati a partecipare.
********************************************************************* SEMINARI DI PROBABILITA' E STATISTICA MATEMATICA DIPARTIMENTO DI MATEMATICA "G. PEANO" UNIVERSITA' DEGLI STUDI DI TORINO *********************************************************************
Giovedì 17 Ottobre 2019 alle ore 16:30 in Aula 2 presso il Dipartimento di Matematica "G. Peano" dell'Università degli Studi di Torino, Via Carlo Alberto 10, la Prof.ssa *Madalina Deaconu* (Inria & Institut Élie Cartan de Lorraine, Nancy)
terrà un seminario dal titolo
** *Stochastic models for fragmentation - application to avalanches * * * Abstract* *In this talk we construct a probabilistic approach for the fragmentation equation with application to avalanches. The fragmentation equation have many applications in various fields such as: in astrophysics - stellar fragmentation, meteorites; in crystallography - crystals fragmentation; in nuclear physics - atoms fission; in geophysics - rupture phenomena like avalanches, earthquakes, etc. We present a large spectrum of properties of these equations through an interpretation by stochastic differential equations with jumps. We introduce also new results connecting the stochastic fragmentation equation with branching processes. In addition, for a particular fragmentation kernel, we discuss an application to the avalanche phenomenon. For these processes, solutions of some particular stochastic differential equations of fragmentation, we construct a numerical approximation scheme. This is a joint work with Lucian Beznea (IMAR, Bucharest) and Oana Lupascu (ISMMA, Bucharest).
Tutti gli interessati sono invitati a partecipare.