Dear all,
during May, prof. Mauro Mariani will be INdAM Visiting Professor at the
University of Pisa, and will deliver a the first half of a PhD Course on
Long time asymptotic and criticality in random dynamics
(abstract below). The second half will be later given by Giacomo di Gesù
(Sapienza Università di Roma). The format will be blended, in presence
and online using Microsoft Teams. The first lecture is scheduled on
Thursday, May 5th, at 11 am,
at Aula Seminari of the Department of Mathematics (Largo Bruno
Pontecorvo, 5, first floor)
and online at the link
https://teams.microsoft.com/l/meetup-join/19%3aNPe79QEwg0BQ31oFUsis6tD5qgF2…
Dates and times later lectures are possibly subject to changes, but are
now tentatively scheduled every Thursday and Friday, 11 am, same room
(Aula Seminari), starting from Thursday 12th. No lecture will be
delivered on Friday 6th.
Please feel free to forward this message to anyone who might be
interested, and write me if you want to be added to the Team (to access
records of the lectures and further material). Regards,
Dario Trevisan
%%%
Abstract: The qualitative behavior of random evolutions in the long time
asymptotic is a classical subject, which has recently found new
motivations in high dimensional optimization. The course provides an
introduction to classical and recent results concerning the long time
behavior of some classes of Markov processes. In the first part, we
will introduce some tools typical of potential theory in an elementary
context, with focus on the reversibility non-reversibility paradigm.
In the second part of the class, we will focus on establishing some
recent results for more involved models and infinite-dimensional
dynamics.
1. Ergodicity and long time behavior of Markov processes.
2. Potential theory and spectral analysis for processes on graphs.
3. Applications to statistical mechanics models.
--
Dario Trevisan,
Università degli Studi di Pisa,
Dipartimento di Matematica,
Largo Bruno Pontecorvo 5,
56127 - Pisa (PI) Italy
telephone: (+39) 050 2213832
mobile: (+39) 331 2899761
Skype: dario-trevisan
e-mail: dario.trevisan AT unipi.it
webpage: http://people.dm.unipi.it/trevisan/
Buongiorno,
è stato pubblicato il Bando relativo all'indizione di una procedura
selettiva per posti da Ricercatore a tempo determinato RTD-A, di cui uno
nel settore concorsuale 13D1 presso il Dipartimento di Scienze Statistiche
dell’Università degli Studi di Padova.
Il bando è disponibile all’indirizzo:
https://www.stat.unipd.it/procedura-selettiva-2022rua03
La *scadenza* per la presentazione delle domande è il *30 maggio 2022 alle
ore 13*.
Si prega di dare la massima diffusione presso tutti gli interessati.
Grazie per la collaborazione
Alessandra Fabbri Colabich
--
Dott.ssa Alessandra Fabbri Colabich
Università degli Studi di Padova
Dipartimento di Scienze Statistiche
[image: Ottocento anni di libertà e futuro]
Dear Colleagues,
we would like to invite you to the following seminar by Jules Pitcho (UZH)
to be held this Wednesday (May 4th) at Dipartimento di Matematica in Pisa
and online via Google Meets.
The organizers,
A. Agazzi and F. Grotto
--------------------------------------------
Location: Sala Seminari, Dipartimento di Matematica, Pisa
Google Meet Link: https://meet.google.com/gji-phwo-vbg
Time: May 4th, 2022, 14:00-15:00 CET
Speaker: Jules Pitcho (UZH - Universität Zürich)
Title: Since the work of Di Perna-Lions and Ambrosio, it is known that the
continuity equation with divergence-free Sobolev vector field is well-posed
for densities with suitable integrability. At the Lagrangian level, these
works translate into a selection principle for integral curves under which
uniqueness for almost every initial data is true. Nevertheless, uniqueness
of integral curves can fail almost everywhere. The deterministic technique
used to construct such divergence-free Sobolev vector fields and non-unique
integral curves go by the name of convex integration: we will explain some
of the ideas underlying this technique. We will conclude by arguing that
for rougher vector fields, a genuinely stochastic behaviour of integral
curves is to be expected: we should not hope for an almost everywhere
selection principle for integral curves.