SEMINARIO DI MATEMATICA
*Mercoledì 23 gennaio 2019*
ore 14:30
*Scuola Normale Superiore*
Pisa
Aula Fermi
*Camille Plenat *
(Aix Marseille, Laboratorio Fibonacci)
Terrà un seminario dal titolo:
*“Toric embedded resolutions of simple singularities via jet schemes**”*
*Abstract:*
One of the aim of Nash’s paper on the arcs spaces (1968) was to understand
resolutions of singularities via the arcs living on the singular variety;
in particular he wanted to give a one to one correspondence between
families of arcs and essential exceptional divisors. J.Fernandez de
Bobadilla and M.Pe Pereira (2011) have shown that such a bijective
correspondence for abstract resolutions of singular surfaces. But the proof
does not give a constructive way to get the resolution from the arcs space.
With H.Mourtada, we construct an embedded toric resolution of simple
singularities from their jets schemes. It is the result I will discuss in
the talk.
Joint work with H. Mourtada.
Tutti gli interessati sono invitati a partecipare.
Valeria Giuliani
Scuola Normale Superiore
Servizio alla Didattica e Allievi
tel. 050 509260
Piazza dei Cavalieri, 7
56126 Pisa
E-mail: valeria.giuliani(a)sns.it
E-mail: classi(a)sns.it
--
Hai ricevuto questo messaggio perché sei iscritto al gruppo "Matematici.Esterni.SNS" di Google Gruppi.
Per annullare l'iscrizione a questo gruppo e non ricevere più le sue email, invia un'email a matematici.esterni.sns+unsubscribe(a)sns.it.
Per postare messaggi in questo gruppo, invia un'email a matematici.esterni.sns(a)sns.it.
Per visualizzare questa discussione sul Web, visita https://groups.google.com/a/sns.it/d/msgid/matematici.esterni.sns/CAGKKDB%3….
_______________________________________________
Settimanale mailing list
Settimanale(a)fields.dm.unipi.it
https://fields.dm.unipi.it/listinfo/settimanale
SEMINARIO DI MATEMATICA
*Martedì 22 gennaio 2019*
ore 15:00
*Scuola Normale Superiore*
Pisa
Aula Tonelli
*Davide Lombardo*
(Dipartimento di Matematica, Università di Pisa)
Terrà un seminario dal titolo:
*“Riduzioni di punti di ordine infinito su gruppi algebrici commutativi *
*”*
*Abstract:*
Ormai oltre cinquant’anni fa, Hasse ha dimostrato che l’insieme dei numeri
primi p che dividono almeno un intero della forma 2n + 1 ammette una
densit`a naturale pari a 17 24 . Questo risultato si pu`o interpretare come
un enunciato relativo alle propriet`a del punto razionale α = 2 ∈ Gm(Q), e
questo punto di vista conduce a una domanda molto pi`u generale: dati un
gruppo algebrico commutativo A su un campo di numeri K e un punto razionale
α ∈ A(K), si vorrebbe comprendere per “quanti” primi p di K la riduzione
modulo p di α abbia ordine divisibile per un certo primo fissato `.
Cercher`o di descrivere un quadro generale nel quale studiare questo
problema e di dare una risposta alla domanda precedente nel caso A sia il
prodotto di una variet`a abeliana e di un toro. La forma di questa risposta
`e sorprendentemente uniforme rispetto alla scelta del gruppo algebrico A e
del punto razionale α, e questo conduce ad enunciati particolarmente
precisi nel caso in cui A sia una curva ellittica. Si tratta di un lavoro
in comune con Antonella Perucca (Universit´e du Luxembourg)
Tutti gli interessati sono invitati a partecipare.
Classe di Scienze
Valeria Giuliani
Scuola Normale Superiore
Servizio alla Didattica e Allievi
tel. 050 509260
Piazza dei Cavalieri, 7
56126 Pisa
E-mail: valeria.giuliani(a)sns.it
E-mail: classi(a)sns.it
--
Hai ricevuto questo messaggio perché sei iscritto al gruppo "Matematici.Esterni.SNS" di Google Gruppi.
Per annullare l'iscrizione a questo gruppo e non ricevere più le sue email, invia un'email a matematici.esterni.sns+unsubscribe(a)sns.it.
Per postare messaggi in questo gruppo, invia un'email a matematici.esterni.sns(a)sns.it.
Per visualizzare questa discussione sul Web, visita https://groups.google.com/a/sns.it/d/msgid/matematici.esterni.sns/CAGKKDBkL….
_______________________________________________
Settimanale mailing list
Settimanale(a)fields.dm.unipi.it
https://fields.dm.unipi.it/listinfo/settimanale
SEMINARIO DI MATEMATICA
*Lunedì 21 gennaio 2019*
ore 14:00
*Scuola Normale Superiore*
Pisa
Aula Bianchi Scienze
*Valentina Franceschi*
(Université Paris Sud, Orasay, France)
Terrà un seminario dal titolo:
*“*On the essential self-adjointness of sub-Laplacians*”*
*Abstract:*
The aim of this seminar is to present some recent results on the essential
self-adjointness of sub Laplacians. Given a smooth manifold M, a
sub-Laplacian is a hypoelliptic operator H, naturally associated to a
sub-Riemannian geometric structure and to a volume measure on it. If the
structure is Riemannian and complete, the associated Laplace-Beltrami
operator (in this case the volume is the intrinsic Riemannian measure) is
essentially self-adjoint. This amounts to say that the solutions to the
Schrodinger equation on M are well defined without imposing any boundary
conditions. If the structure is sub-Riemannian, sub-Laplacians are also
essentially self-adjoint, assuming completeness of the metric structure and
smoothnessn of the volume measure. In this seminar, we address the case
where the structure is sub-Riemannian and (1) either the measure (chosen to
be intrinsic) is non-smooth, (2) or the metric structure is
non-complete. Regarding
(1), we present results concerning sub-Riemannian structures endowed with
singular measures. A standing conjecture, formulated by Boscain and Laurent
asserts that singular sub-Laplacians are essentially self-adjoint out of
the singularity. We will explain our results supporting the conjecture and
underline the cases that are not included in our analysis. Regarding (2),
we present recent results on 3D sub-Laplacians defined on non-complete
sub-Riemannian manifolds, obtained by removing a point from a complete one.
We show that, unlike the 3D Euclidean case, essentially self-adjointness
holds in this setting.
This is a joint work with R.~Adami, U.~Boscain and D.~Prandi.
Tutti gli interessati sono invitati a partecipare.
Classe di Scienze
Valeria Giuliani
Scuola Normale Superiore
Servizio alla Didattica e Allievi
tel. 050 509260
Piazza dei Cavalieri, 7
56126 Pisa
E-mail: valeria.giuliani(a)sns.it
E-mail: classi(a)sns.it
--
Hai ricevuto questo messaggio perché sei iscritto al gruppo "Matematici.Esterni.SNS" di Google Gruppi.
Per annullare l'iscrizione a questo gruppo e non ricevere più le sue email, invia un'email a matematici.esterni.sns+unsubscribe(a)sns.it.
Per postare messaggi in questo gruppo, invia un'email a matematici.esterni.sns(a)sns.it.
Per visualizzare questa discussione sul Web, visita https://groups.google.com/a/sns.it/d/msgid/matematici.esterni.sns/CAGKKDBnd….
_______________________________________________
Settimanale mailing list
Settimanale(a)fields.dm.unipi.it
https://fields.dm.unipi.it/listinfo/settimanale
SEMINARIO DI MATEMATICA
*Giovedì 10 gennaio 2019*
ore 14:30
*Scuola Normale Superiore*
Pisa
Aula Tonelli
*Lionel Darondeau*
(Montpellier)
Terrà un seminario dal titolo:
*“**Orbifold hyperbolicity**”*
*Abstract:*
I will present a work with F. Campana and E. Rousseau on the hyperbolicity
of geometric orbifolds. I will first recall the notion of entire curve in
the category of geometric orbifolds introduced by Campana. I will briefly
justify the necessity to work in this setting, which generalizes and
extends the classical setting (compact setting and logarithmic setting). We
will then see that the natural theory of orbifold jet differentials (that
we introduce for higher orders) allows us to obtain new results, but is
rather surprising in comparison with the classical setting.
Tutti gli interessati sono invitati a partecipare.
Classe di Scienze
Valeria Giuliani
Scuola Normale Superiore
Servizio alla Didattica e Allievi
tel. 050 509260
Piazza dei Cavalieri, 7
56126 Pisa
E-mail: valeria.giuliani(a)sns.it
E-mail: classi(a)sns.it
--
Hai ricevuto questo messaggio perché sei iscritto al gruppo "Matematici.Esterni.SNS" di Google Gruppi.
Per annullare l'iscrizione a questo gruppo e non ricevere più le sue email, invia un'email a matematici.esterni.sns+unsubscribe(a)sns.it.
Per postare messaggi in questo gruppo, invia un'email a matematici.esterni.sns(a)sns.it.
Per visualizzare questa discussione sul Web, visita https://groups.google.com/a/sns.it/d/msgid/matematici.esterni.sns/CAGKKDBmr….
_______________________________________________
Settimanale mailing list
Settimanale(a)fields.dm.unipi.it
https://fields.dm.unipi.it/listinfo/settimanale