AVVISO IMPORTANTE
Si segnala che, per motivi organizzativi non previsti, il COLLOQUIO DE GIORGI annunciato per martedi' 11 luglio (del quale si acclude l'avviso)
SI TERRA' ECCEZIONALMENTE IN AULA BIANCHI.
COLLOQUIO DE GIORGI
Simon Gindikin
Rutgers University
"Harmonic analysis on complex semisimple groups and symmetric spaces from point of view of complex analysis"
Abstract
In the classical conception of harmonic analysis on semisimple groups of E. Cartan and H. Weyl there was very essential interaction between algebraic and transcendental (analytic) methods. It looks that one more possibility - to start from the complex analysis on groups - was never systematically considered. Since all complex semisimple groups are Stein manifolds and all spherical functions are holomorphic, this way deserves an attention.
If to choose this way then we will start not from characters or irreducible representations but from Cauchy integral formula on these groups. It turns out that there is a beautiful explicit Cauchy formula on all semisimple Lie groups and, more general, on all symmetric Stein manifolds and this formula will be the basic subject of this talk. This formula, similarly to the situation in one-dimensional complex analysis, is a base of complex analysis on these symmetric spaces, which incorporates the classical harmonic analysis and adds some new facts.
Martedì 11 luglio 2006
ore 17.00
Aula Bianchi
Piazza dei Cavalieri, 7
PISA
--------------------------------------------------------------------------------
_______________________________________________
Settimanale mailing list
Settimanale(a)mail.dm.unipi.it
https://mail.dm.unipi.it/mailman/listinfo/settimanale
--------------------------------------------------------------------------------
_______________________________________________
Utenti mailing list
Utenti(a)mail.dm.unipi.it
https://mail.dm.unipi.it/mailman/listinfo/utenti
_______________________________________________
Settimanale mailing list
Settimanale(a)mail.dm.unipi.it
https://mail.dm.unipi.it/mailman/listinfo/settimanale
AVVISO IMPORTANTE
Si segnala che, per motivi organizzativi non previsti, il COLLOQUIO DE GIORGI annunciato per martedi' 11 luglio (del quale si acclude l'avviso)
SI TERRA' ECCEZIONALMENTE IN AULA BIANCHI.
Cordialmente, Caterina D'Elia
_____________________
Caterina D'Elia
Scuola Normale Superiore
Classe di Scienze
Responsabile
Segreteria scientifica e amministrativa
Piazza dei Cavalieri 7
56100 PISA
Tel. ++39--050.509203
Fax ++39-050-509045
_______________________________________________________________________________________________________________________________________
Le informazioni contenute nella presente e-mail e nei relativi allegati possono essere riservate e sono, comunque, destinate esclusivamente al destinatario in indirizzo.
E' vietata, pertanto, la diffusione, distribuzione e/o copiatura di tali informazioni da parte di qualsiasi soggetto diverso dal destinatario. Chiunque abbia ricevuto o letto
questa e-mail per errore o senza esserne legittimato è invitato a darne immediatamente notizia al mittente tramite fax o e-mail e a distruggerla. Grazie.
----- Original Message -----
From: Michele Verde
To: Centro De Giorgi
Sent: Friday, June 23, 2006 11:49 AM
Subject: Avviso Colloquio De Giorgi, prof. Simon Gindikin (11.07.06)
COLLOQUIO DE GIORGI
Simon Gindikin
Rutgers University
"Harmonic analysis on complex semisimple groups and symmetric spaces from point of view of complex analysis"
Abstract
In the classical conception of harmonic analysis on semisimple groups of E. Cartan and H. Weyl there was very essential interaction between algebraic and transcendental (analytic) methods. It looks that one more possibility - to start from the complex analysis on groups - was never systematically considered. Since all complex semisimple groups are Stein manifolds and all spherical functions are holomorphic, this way deserves an attention.
If to choose this way then we will start not from characters or irreducible representations but from Cauchy integral formula on these groups. It turns out that there is a beautiful explicit Cauchy formula on all semisimple Lie groups and, more general, on all symmetric Stein manifolds and this formula will be the basic subject of this talk. This formula, similarly to the situation in one-dimensional complex analysis, is a base of complex analysis on these symmetric spaces, which incorporates the classical harmonic analysis and adds some new facts.
Martedì 11 luglio 2006
ore 17.00
Aula Bianchi
Piazza dei Cavalieri, 7
PISA
_______________________________________________
Settimanale mailing list
Settimanale(a)mail.dm.unipi.it
https://mail.dm.unipi.it/mailman/listinfo/settimanale
Obtain a prosperous future, money-earning power and
the prestige that comes with having the career position you've
always dreamed of. Diplomas from prestigious non-accredited
universities based on your present knowledge and life experience.
No required tests, classes, books or examinations.
Bachelors', Masters', MBA's, Doctorate & Ph.D. degrees
available in your field.
Confidentiality Assured..
Call Now To Receive Your Diploma Within 2 Weeks
1-650-456-2500
_______________________________________________
Settimanale mailing list
Settimanale(a)mail.dm.unipi.it
https://mail.dm.unipi.it/mailman/listinfo/settimanale
Obtain your diploma, bachelors' or Masters' in 2 weeks time from
prestigious non-accredited universities based on your present knowledge
and life experience.
No tests, exams or classes require.
Call us now to receive yours today!
1-650-456-2500
Confidentiality Assured
_______________________________________________
Settimanale mailing list
Settimanale(a)mail.dm.unipi.it
https://mail.dm.unipi.it/mailman/listinfo/settimanale
Obtain your diploma, bachelors' or Masters' in 2 weeks time from
prestigious non-accredited universities based on your present knowledge
and life experience.
No tests, exams or classes require.
Call us now to receive yours today!
1-509-355-1567
Confidentiality Assured
_______________________________________________
Settimanale mailing list
Settimanale(a)mail.dm.unipi.it
https://mail.dm.unipi.it/mailman/listinfo/settimanale
27/06 Aula seminari ore 15
J.M. Schlenker (Universite' Paul Sabatier, Toulouse)
Titolo:
"3-dimensional manifolds with particles".
Abstract:
A "particle" in a 3-dimensional hyperbolic 3-manifold is
a cone
singularity along an infinite line, with an angle which
is less
than $\pi$. There is a natural notion of quasi-Fuchsian
manifold
with particles, and those appear to share many of the
striking
geometric properties of (non-singular) quasi-Fuchsian
3-manifolds.
We will describe some examples of properties which can be
extended
to this context. Quasi-Fuchsian 3-manifolds with
particles also
have a Lorentzian counterpart, GHMC AdS manifolds with
particles,
to which some properties of Mess' GHMC AdS manifolds can
be extended.
29/06 Aula riunioni ore 15
G. Mondello (MIT)
Titolo:
Cicli di Witten sullo spazio dei moduli delle superfici
di Riemann
Abstract:
Ogni presentation dello spazio dei moduli delle superfici
di Riemann da` origini a classi caratteristiche
"naturali". Dal punto di vista algebro-geometrico, esse
sono le cosiddette classi tautologiche.
D'altra parte, la decomposizione cellulare dello spazio
dei moduli per mezzo di grafi a nastro consente di
definire cicli combinatorici interessanti, che sono anche
chiamati cicli di Witten.
Lo scopo del seminario e` di illustrare alcune idee della
dimostrazione della congettura di Witten-Kontsevich (i
cicli combinatorici sono tautologici) e, se il tempo lo
consente, accennare a possibili applicazioni e
generalizzazioni.
*************************
Segreteria Didattica
Giulia Curciarello
tel- 050 2213219
*************************
_______________________________________________
Settimanale mailing list
Settimanale(a)mail.dm.unipi.it
https://mail.dm.unipi.it/mailman/listinfo/settimanale
SEMINARIO DI MATEMATICA
Giovedì 6 luglio 2006
ore 16.00
Scuola Normale Superiore
Pisa
(Aula Tonelli)
David W. MASSER
Università di Basilea
Terrà un seminario dal titolo:
"Linear equations in multiplicative groups over positive characteristic"
Abstract
The equation $a_1x_1+...+a_nx_n=1$, to be solved in unknowns $x_1,...,x_n$ lying in a fixed multiplicative group, has been much studied in the case of zero characteristic. However there are not many results over positive characteristic. This case is generally easier to handle, but it presents interesting new features.
For example, although the equation can have infinite $(n-2)$-parameter families of solutions, these can be classified and estimated in a completely effective way. This has applications to multiple mixing problems for algebraic actions on disconnected compact abelian groups.
Tutti gli interessati sono invitati a partecipare.
La Segreteria della
Classe di Scienze
- - - - -
Michele Verde
Scuola Normale Superiore
Segreteria Classe di Scienze
Tel. 050-509048
Fax. 050-509045
Piazza Dei Cavalieri, 7
56126 Pisa
E-Mail: m.verde(a)sns.it
E-Mail: segreteria.scienze(a)sns.it
- - - - -
Le informazioni contenute nella presente e-mail e nei relativi allegati possono essere riservate e sono, comunque, destinate esclusivamente al destinatario in indirizzo.
E' vietata, pertanto, la diffusione, distribuzione e/o copiatura di tali informazioni da parte di qualsiasi soggetto diverso dal destinatario.
Chiunque abbia ricevuto o letto questa e-mail per errore o senza esserne legittimato è invitato a darne immediatamente notizia al mittente tramite fax o e-mail e a distruggerla.
Grazie.
_______________________________________________
Settimanale mailing list
Settimanale(a)mail.dm.unipi.it
https://mail.dm.unipi.it/mailman/listinfo/settimanale
Prego notare l'ora
Grazie
Francesca Acquistapace
mercoledi' 21-06-2006 Ore 15:00 PRECISE - Sala dei Seminari
Jesus Ruiz (Universitad Complutense Madrid) :
"Open questions concernings Hilbert's 17th Problem for analytic curves"
Abstract
The Hilbert 17th Problem asks when a psd function is a sum of squares, and of how many.
For real analytic curves this reduces to the local problem
for germs at singular points. For those germs, the problem splits into the
consideration of their irreducible branches.
Now, irreducible curve germs are classically discussed
using the semigroup of values: all irreducible curves with fixed semigroup
form a "moduli" algebraic set in some finite dimensional affine space.
There, Pythagoras numbers, positive semidefinite germs, sum of squares
provide semialgebraic mappings on and stratifications of the "moduli" set.
The understanding od these semialgebraic data is a difficult matter that
has surprising connections with classical concepts (for instance, Arf
curves and Pythagorean curves are one and the same thing).
*************************
Segreteria Didattica
Giulia Curciarello
tel- 050 2213219
*************************
_______________________________________________
Settimanale mailing list
Settimanale(a)mail.dm.unipi.it
https://mail.dm.unipi.it/mailman/listinfo/settimanale
_______________________________________________
Utenti mailing list
Utenti(a)mail.dm.unipi.it
https://mail.dm.unipi.it/mailman/listinfo/utenti
_______________________________________________
Settimanale mailing list
Settimanale(a)mail.dm.unipi.it
https://mail.dm.unipi.it/mailman/listinfo/settimanale
SEMINARIO DI SISTEMI DINAMICI OLOMORFI (e dintorni)
Martedi' 20 giugno 2006
0re 14.30
Sala Conferenze
Collegio Puteano
Corinna ULCIGRAI (Princeton)
"Mixing for flows over interval exchange transformations"
Abstract: We consider suspension flows over interval
exchange transformations,
under a roof function with logarithmic singularities. Such
flows arise as minimal
components of flows on surfaces given by multi-valued
Hamiltonians. We prove
that if the roof function has an asymmetric logarithmic
singularity, the suspension
flow is strongly mixing for a full measure set of interval
exchanges. This generalizes
a result by Khanin and Sinai for flows over rotations of
the circle. In the proof we use a recent result by
Avila-Gouzel-Yoccoz.
*************************
Segreteria Didattica
Giulia Curciarello
tel- 050 2213219
*************************
_______________________________________________
Settimanale mailing list
Settimanale(a)mail.dm.unipi.it
https://mail.dm.unipi.it/mailman/listinfo/settimanale