venerdi' 20-01-2006 (16:00) - Sala Riunioni
Gianni MORCHIO (Dip.di Fisica, Univ. di Pisa.) :
I limiti della descrizione per traiettorie della Meccanica Quantistica di Schroedinger
SEMINARIO sulle EDP
Riassunto:
Si ricorda che la Meccanica Quantistica di un numero finito di particelle non relativistiche senza spin e` stata riformulata da D.Bohm e da E.Nelson in termini di traiettorie classiche, deterministiche o stocastiche, riproducendo tutte le previsioni per osservabili di posizione, a un qualsiasi tempo fissato. Misure di posizione a tempi diversi non sono in generale compatibili, ma lo diventano in presenza di ottosistemi non interagenti. Si dimostra che - la riproducibilita` con teorie classiche delle previsioni a tempo fisso e` una conseguenza immediata di un risultato generale
per le previsioni della M.Q. relative a sottoalgebre commutative disgiunte e puo` essere fatta da una larghissima classe di teorie. - le previsioni della M.Q. per variabili compatibili a tempi diversi, su stati stazionari di Hamiltoniani di sottosistemi non interagenti, sono riprodotte, sia dalla teoria di Bohm che da quella di Nelson, solo nel caso di stati prodotto sui sottosistemi. - Per una grande classe di modelli, nessuna teoria classica, su traiettorie o su qualsiasi altro spazio di variabili, puo` riprodurre le previsioni della M.Q. per variabili compatibili a tempi diversi.
*********************************************************************************************************************************
venerdi' 20-01-2006 (17:00) - Sala Riunioni
Riccardo ADAMI (Centro) :
The rigorous derivation of the non linear Schrodinger equation from the dynamics of a many-body quantum system
SEMINARIO sulle EDP
Abstract:
In the framework of the non relativistic quantum mechanics the state of a system is represented by a square-integrable function, called "wave function", whose evolution is governed by the time-dependent
Schrodinger equation. For a system composed by a large number of identical bosons, such equation is many-body and linear. Nevertheless, it is well-known that in particular regimes (e.g. Bose-Einstein condensates), the system is well described by a one-body equation with a cubic non linearity.
Then the question is how to derive rigorously the effective, non linear dynamics from the microscopic, linear one. In the last year some results in such direction have appeared. In this talk we focus on the first of such results, restricted to the one-dimensional case and obtained in collaboration with C. Bardos (Paris), F. Golse (Paris), and A. Teta L'Aquila).
The three-dimensional case has been solved by L. Erdos (Munich), B. Schlein (Harvard) and H.-T. Yau (Harvard).
Segreteria Didattica
Giulia Curciarello
tel- 050 2213219
_______________________________________________
Settimanale mailing list
Settimanale(a)mail.dm.unipi.it
https://mail.dm.unipi.it/mailman/listinfo/settimanale
martedi' 10-01-2006 (15:00) - Sala Seminari
Seminario di Topologia :
Proprietà residuali dei gruppi treccia e delle loro generalizzazioni
Molte proprietà combinatorie dei gruppi treccia sono conosciute: ad esempio il gruppo dei commutatori di un gruppo treccia è perfetto e i gruppi di trecce pure sono residualmente nilpotenti senza torsione. In
questo seminario ci interesseremo al caso delle generalizzazioni algebriche e topologiche dei gruppi treccia, mostrando quali sono i nuovi fenomeni che appaiono e quali sono i problemi che restano al momento insoluti.
Segreteria Didattica
Giulia Curciarello
tel- 050 2213219
_______________________________________________
Settimanale mailing list
Settimanale(a)mail.dm.unipi.it
https://mail.dm.unipi.it/mailman/listinfo/settimanale
Mercoledi' 21 dicembre 2005, ore 15.30, sala seminari.
Antonio Rapagnetta (Pisa)
"Varieta' simplettiche irriducibili III"
Abstract: Nel seminario si discuteranno due risultati di Huybrechts sulle varieta' simplettiche irriducibili: la suriettivita' della mappa dei periodi (introdotta nel precedente seminario) e l'equivalenza per deformazione di varieta' simplettiche irriducibili birazionali.
Argomento: geometria.
_______________________________________________
Settimanale mailing list
Settimanale(a)mail.dm.unipi.it
https://mail.dm.unipi.it/mailman/listinfo/settimanale
Seminario EDP:
mercoledi' 14-12-2005 (15:00) - Sala Riunioni
Hideo Kubo (Department of Mathematics, Osaka University.) :
On the uniform decay estimates for the wave equation in an exterior domain.
Abstract: The aim of this talk is to give the unform decay estimates for
the wave equation in an exterior domain. As an application, we discuss the
nonlinear purturbations in three space dimensions.
_______________________________________________
Settimanale mailing list
Settimanale(a)mail.dm.unipi.it
https://mail.dm.unipi.it/mailman/listinfo/settimanale
>
> Martedi' 20 dicembre alle ore 14.00 presso la sala conferenze del
> Centro di Ricerca Matematica Ennio de GIorgi, Collegio Puteano,
> si terra' un seminario di sistemi dinamici:
>
> Dr. Martin CELLI (S.N.S.)
>
>
> "The N-body problem, its perverse choreographies, and some
> properties of systems with vanishing total mass"
>
> ABSTRACT
> "Newton's equations describe the motion of N punctual
> particles which interact through gravitation. For some
> solutions, which are called choreographies, the N bodies
> chase each other on the same curve with the same phase
> shifts between two bodies. The first non trivial
> choreography (the "eight" orbit) was found numerically by
> C. Moore in 1993, and its existence was proved by A.
> Chenciner and R. Montgomery in 1999, thanks to
> considerations on symmetries.
>
> Since this discovery, many choreographies have been found
> numerically (C. Simó) or analytically (S. Terracini, A.
> Venturelli, D. Ferrario, K.-C. Chen), thanks to a trick
> due to C. Marchal. All the choreographies that are
> actually known require equal masses. Indeed, it has been
> proved that in the plane, there was no choreography with
> distinct masses or "perverse" choreography with number of
> bodies N lower than or equal to five (A. Chenciner, 2000).
> This happens to be true for any N if we replace the
> Newtonian potential by a logarithmic potential (M. Celli,
> 2002). This can be applied to N-vortex systems, which are
> used to describe planar fluids.
>
> The proof of the latter result is based on properties of
> the equilibria of N-body systems with vanishing total
> mass. For systems with vanishing total mass, some strange
> phenomena may occur. For instance, in the two-body
> problem, the motion of the vector defined by the two
> bodies is uniform rectilinear. As another example, in the
> three-body problem, for any non collinear configuration,
> we can find a system of masses whose sum vanishes and
> initial velocities which generate a rigid motion (the
> distances between the bodies are constant) with dimension
> three, whereas it can be shown that with positive masses,
> a rigid motion is always planar.
>
> These properties are due to the fact that, with vanishing
> total mass, the time-dependent first integral of the
> center of inertia becomes a vector, which is invariant
> under translations. Thanks to this, the collinear
> three-body problem is integrable under an assumption on
> the velocities.
>
> This property also enables to compute the four-body
> central configurations for masses x, -x, y, -y (M. Celli,
> 2005). The study of central configurations (which generate
> homothetic motions) is a difficult problem in celestial
> mechanics. Their finiteness for positive masses is the
> subject of S. Smale's sixth problem for the century, which
> was recently solved for N=4 (M. Hampton, R. Moeckel, 2004)
> thanks to a computer assisted proof. The only other known
> case where four-body central configurations can be
> computed is the case with equal masses (A. Albouy, 1996)."
>
>
> ----
> Stefano Marmi
> Scuola Normale Superiore fax (39)050563513
> Piazza dei Cavalieri 7 phone (39)050509064
> 56126 Pisa email: s.marmi(a)sns.it
> Italy
>
>
>
>
>
>
_______________________________________________
Settimanale mailing list
Settimanale(a)mail.dm.unipi.it
https://mail.dm.unipi.it/mailman/listinfo/settimanale
Martedi' 13 dicembre alle ore 14.30
presso la sala conferenze del Centro di Ricerca Matematica Ennio de Giorgi, Collegio Puteano,
si terra' un seminario di sistemi dinamici:
Prof. Jean-Christophe YOCCOZ (College de France)
"The Teichmuller flow is exponentially mixing"
ABSTRACT:
We will report on a jointwork with A. Avila and S. Gouezel. The
Teichmuller
flow is a canonical flow on the space of moduli for translation surfaces,
which preserves a natural absolutely continuous invariant measure. Veech
had
shown earlier that the flow is mixing. We prove exponential decay of
correlations for Hlder observables. This extends a well-known result of
Ratner for the geodesic flow on the modular surface.
_______________________________________________
Settimanale mailing list
Settimanale(a)mail.dm.unipi.it
https://mail.dm.unipi.it/mailman/listinfo/settimanale
giovedi' 15-12-2005 (17:30) - Sala dei Seminari
Annamaria Montanari (Universita` di Bologna) :
The Alexandrov Soap Bubbles Theorem for the Levi curvature
The celebrated Alexandrov Theorem asserts that a compact hypersurface with constant mean curvature is a sphere. In this talk we shall show that a similar result holds for the Levi curvature.
_______________________________________________
Settimanale mailing list
Settimanale(a)mail.dm.unipi.it
https://mail.dm.unipi.it/mailman/listinfo/settimanale
mercoledi' 14-12-2005 (15:30) - sala seminari
Mauro Beltrametti (Genova) :
Varieta' proiettive contenenti curve speciali
Argomento: Geometria
Abstract:
Sia Y una curva non singolare immersa in una varieta' proiettiva complessa X di dimensione n maggiore di 1 con fibrato normale ampio N. Per ogni intero non negativo p, denotiamo con a_p la mappa di restrizione Pic(X)--->Pic(Y(p)), dove Y(p) e' il p-mo intorno infinitesimale di Y in X. Si prova innanzi tutto che esiste un isomorfismo di gruppi abeliani Coker(a_p) = Coker(a_0)\oplus K_p(Y,X), dove K_p(Y,X) e' un quoziente dello spazio vettoriale complesso L_p(Y,X) := \oplus_{i=1}^p H^1(Y,S^i N)*) con un sottogruppo libero di L_p(Y,X) di rango inferiore al numero di Picard di X (dove S^i N denota la i-ma potenza simmetrica di N).
Si prova poi che L_1(Y,X) = 0 se e solo se Y e' razionale ed N e' somma diretta di n-1 copie di O(1) (cioe' Y e' una quasi-line).
Le curve speciali in questione sono quelle per cui L_1(Y,X) ha dimensione uno. Questa situazione e' strettamente collegata con un risultato classico di B. Segre. Si prova che Y e' speciale se e soltanto se o Y e' razionale con N somma diretta di O(2) e n-2 copie di O(1), oppure Y e' ellittica con N di grado 1. Si discutono alcuni risultati generali ed esempi in dimensione qualsiasi e si fornisce una classificazione completa delle coppie (X,Y) nel caso n = 2.
_______________________________________________
Settimanale mailing list
Settimanale(a)mail.dm.unipi.it
https://mail.dm.unipi.it/mailman/listinfo/settimanale